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Résumé

L’apprentissage profond est un domaine de recherche en forte croissance en
apprentissage automatique qui est parvenu à des résultats impressionnants dans
di↵érentes tâches allant de la classification d’images à la parole, en passant par la
modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d’ar-
chitecture profonde, s’avèrent particulièrement prometteurs. Les réseaux récurrents
peuvent capter la structure temporelle dans les données. Ils ont potentiellement la
capacité d’apprendre des corrélations entre des événements éloignés dans le temps
et d’emmagasiner indéfiniment des informations dans leur mémoire interne.

Dans ce travail, nous tentons d’abord de comprendre pourquoi la profondeur est
utile. Similairement à d’autres travaux de la littérature, nos résultats démontrent
que les modèles profonds peuvent être plus e�caces pour représenter certaines
familles de fonctions comparativement aux modèles peu profonds. Contrairement
à ces travaux, nous e↵ectuons notre analyse théorique sur des réseaux profonds
acycliques munis de fonctions d’activation linéaires par parties, puisque ce type de
modèle est actuellement l’état de l’art dans di↵érentes tâches de classification.

La deuxième partie de cette thèse porte sur le processus d’apprentissage. Nous
analysons quelques techniques d’optimisation proposées récemment, telles l’optimi-
sation Hessian free, la descente de gradient naturel et la descente des sous-espaces de
Krylov. Nous proposons le cadre théorique des méthodes à région de confiance gé-
néralisées et nous montrons que plusieurs de ces algorithmes développés récemment
peuvent être vus dans cette perspective. Nous argumentons que certains membres
de cette famille d’approches peuvent être mieux adaptés que d’autres à l’optimisa-
tion non convexe.

La dernière partie de ce document se concentre sur les réseaux de neurones
récurrents. Nous étudions d’abord le concept de mémoire et tentons de répondre
aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire
sans limite ? Ce comportement peut-il être appris ? Nous montrons que cela est
possible si des indices sont fournis durant l’apprentissage.

Ensuite, nous explorons deux problèmes spécifiques à l’entrâınement des ré-
seaux récurrents, à savoir la dissipation et l’explosion du gradient. Notre analyse
se termine par une solution au problème d’explosion du gradient qui implique de
borner la norme du gradient. Nous proposons également un terme de régularisa-
tion conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur
un ensemble de données synthétique, nous montrons empiriquement que ces méca-
nismes peuvent permettre aux réseaux récurrents d’apprendre de façon autonome
à mémoriser des informations pour une période de temps indéfinie.

Finalement, nous explorons la notion de profondeur dans les réseaux de neurones
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récurrents. Comparativement aux réseaux acycliques, la définition de profondeur
dans les réseaux récurrents est souvent ambiguë. Nous proposons di↵érentes façons
d’ajouter de la profondeur dans les réseaux récurrents et nous évaluons empirique-
ment ces propositions.

Mots-clés: apprentissage profond, mémoire, gradient naturel, réseaux de neu-
rones, optimisation, réseaux de neurones récurrents, méthodes du second ordre,
apprentissage supervisé.
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Summary

Deep Learning is a quickly growing area of research in machine learning, provid-
ing impressive results on di↵erent tasks ranging from image classification to speech
and language modelling. In particular, a subclass of deep models, recurrent neural
networks, promise even more. Recurrent models can capture the temporal struc-
ture in the data. They can learn correlations between events that might be far
apart in time and, potentially, store information for unbounded amounts of time
in their innate memory.

In this work we first focus on understanding why depth is useful. Similar to
other published work, our results prove that deep models can be more e�cient at
expressing certain families of functions compared to shallow models. Di↵erent from
other work, we carry out our theoretical analysis on deep feedforward networks with
piecewise linear activation functions, the kind of models that have obtained state
of the art results on di↵erent classification tasks.

The second part of the thesis looks at the learning process. We analyse a few
recently proposed optimization techniques, including Hessian Free Optimization,
natural gradient descent and Krylov Subspace Descent. We propose the framework
of generalized trust region methods and show that many of these recently proposed
algorithms can be viewed from this perspective. We argue that certain members of
this family of approaches might be better suited for non-convex optimization than
others.

The last part of the document focuses on recurrent neural networks. We start
by looking at the concept of memory. The questions we attempt to answer are:
Can recurrent models exhibit unbounded memory? Can this behaviour be learnt?
We show this to be true if hints are provided during learning.

We explore, afterwards, two specific di�culties of training recurrent models,
namely the vanishing gradients and exploding gradients problem. Our analysis
concludes with a heuristic solution for the exploding gradients that involves clipping
the norm of the gradients. We also propose a specific regularization term meant
to address the vanishing gradients problem. On a toy dataset, employing these
mechanisms, we provide anecdotal evidence that the recurrent model might be
able to learn, with out hints, to exhibit some sort of unbounded memory.

Finally we explore the concept of depth for recurrent neural networks. Com-
pared to feedforward models, for recurrent models the meaning of depth can be
ambiguous. We provide several ways in which a recurrent model can be made deep
and empirically evaluate these proposals.

Keywords: deep learning, memory, natural gradient, neural network, optimiza-
tion, recurrent neural networks, second order methods, supervised learning.
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1 Introduction

“The solution takes the form of a new associationism, or better, since

it di↵ers deeply and widely from that older British associationism, of a

new connectionism.”

– Edward Thorndike, The Fundamentals of Learning, 1932 1

Connectionist approaches to learning is an old idea that dates back at least to

the beginning of the last century 2. Loosely inspired by the structure of the brain,

the term itself is somewhat vague, having slightly di↵erent particular meanings

in di↵erent fields of research. We will focus on the “engineering” approach to

conectionism which follows in spirit the claim made by Reeke and Edelman (1989),

namely that it has more in common with statistical physics and engineering rather

than biology. By “engineering” connectionism we mostly refer here to artificial

neural networks, where a set of interconnected computational cells are used to

learn some target behaviour. The power of this model is hidden in the topology,

the strength of the weights connecting the di↵erent cells, rather than the single cell

itself. Also, our focus is in understanding how and what kind of behaviours these

models can learn, rather than if this is how the brain works.

The connectionist movement went in and out of the spotlight during its com-

plicated history. Currently, in the field of machine learning, it gained a lot of

popularity under the name of deep learning. The seminal work of Hinton et al.

(2006); Bengio et al. (2007); Ranzato et al. (2007) showed that, by employing a

layer-wise pretraining followed by a global finetuning stage to train a deep multi-

layer neural network, the trained model can outperform its shallow counterparts.

From this perspective deep learning is just a reformulation of connectionism, where

special emphasis is put on the depth of the models and their ability to extract useful

features from the data. The term deep learning is also used to indicate this specific

1. Quote taken from Medler (1998)
2. For a history of the movement, check Medler (1998)
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resurgence of neural networks research (which had become somewhat unpopular

previous to the above mentioned work of Hinton, Bengio and LeCun) rather than

research on neural networks with several layers which kept being carried out even

during this period of unpopularity (Schmidhuber, 2014).

A wealth of empirical evidence followed this resurgence, where state of the

art results have been obtained on image classification (Krizhevsky et al., 2012;

Zeiler and Fergus, 2013; Goodfellow et al., 2013, 2014), speech (Dahl et al., 2010;

Hinton et al., 2012; Graves et al., 2013), language modelling (Pascanu, Gulcehre,

Cho, and Bengio (2014), Mikolov et al. (2011)), online handwritten recognition

(Graves et al., 2009), chaotic systems prediction (Jaeger and Haas, 2004) 1 and

drug discovery 2 to name just a few. Some of these methods are being employed

successfully for di↵erent vision and NLP tasks by industrial giants like Microsoft,

Google, IBM, Yahoo 3. Facebook has opened a research center with an emphasis

on deep learning 4.

In spite of all these successes, more work is needed to understand, automate

and extend these techniques. Especially since, without properly understanding

these models, we could easily end up moving back towards a dark age period for

connectionism. This would be induced by over-estimating or over-promising what

these models can deliver based on just a few observations. Little is known about

how e�cient these models can model certain families of functions, or what tasks

are fundamentally impossible to model.

We consider our work as an attempt to increase our understanding of some

of these open core questions and we hope that these results can help in some

small amount to increase even more, if that is possible, the momentum of this

renaissance of neural networks. This work is motivated by the belief that artificial

intelligence could be obtained via a connectionist approach. This belief is based, for

example, on the relationship between artificial neural networks and the brain (which

structurally at least seems to use a similar strategy for processing information).

Another argument for the ability of neural networks to exhibit intelligence comes

1. This work precedes the work of Hinton et al., but it does rely on recurrent neural models
and hence can be seen as an application of deep learning

2. Merck Molecular Activity Challenge. https://www.kaggle.com/c/MerckActivity
3. Source: http://gigaom.com/2013/11/01/the-gigaom-guide-to-deep-learning-whos-doing-it-

and-why-it-matters/
4. Source: http://techcrunch.com/2013/12/09/facebook-artificial-intelligence-lab-lecun/
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from their universal approximator properties, in particular the fact that recurrent

models can approximate arbitrarily well any Turing machine. If this observation is

coupled with the e�ciency of these models to approximate complex behaviour it

becomes an argument for their role in constructing an intelligent agent.

The thesis does not cover all projects I took part of while doing my doctoral

studies. An incomplete list of work to which I contributed but which is not covered

here is as follows:

– In Gulcehre, Cho, Pascanu, and Bengio (2014) we propose a novel activa-

tion function inspired by the recently proposed maxout activation function

(Goodfellow et al., 2013). We argued that the proposed Lp units can repre-

sent more e�ciently boundaries of non-stationary curvature by employing a

di↵erent learnt exponent p for di↵erent units.

– In Desjardins, Pascanu, Courville, and Bengio (2013) we provide an e�cient

implementation of natural gradient for Deep Boltzmann Machines (DBM).

– In Bengio, Boulanger-Lewandowski, and Pascanu (2013) we investigate the

e↵ects of a few di↵erent alterations proposed for recurrent neural models.

Among other things we explore using rectifier units, leaky-integration units

(where a low pass filter of di↵erent sampled cut-o↵ is set on each hidden unit),

a di↵erent formulation of Nesterov momentum, etc.

– In Mandel, Pascanu, Eck, Bengio, Aeillo, Schifanella, and Menczer (2011);

Larochelle, Mandel, Pascanu, and Bengio (2012) we investigated discrimina-

tive restricted Boltzmann machines for multitask learning.

– Bergstra et al. (2010); Bastien et al. (2012) describe Theano, a linear algebra

library developed in our group that employs symbolic computations. For this

library I had major contributions, among other minor tasks, to the modules

related to:

– building loops (crucial for implementing recurrent models),

– applying the chain rule in reverse order (the R-operator),

– doing lazy evaluation.

– During my internship at Microsoft I investigated the use of recurrent neural

networks and echo state networks for malware detection.
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1.1 Annotated Overview of Chapters

The content of this thesis overlaps with seven di↵erent papers that I published

while doing my studies, and, some of the content of the thesis has been borrowed

directly from these works. As most research carried out in this field, these publi-

cations are the result of close collaborations with di↵erent colleagues. For any of

these works it can be hard to discern exactly to whom does each idea or element

of the paper rightfully belong. In this section I will try to do exactly this, and

somehow extract my original (main) contributions for each work. By doing so, I

hope to highlight, to some degree, my ownership of the content presented in this

thesis, which is mostly based on these elements that I considered mine. At the

same time, in this section, I will try to provide an overview of the whole document.

Chapter 2 provides a brief introduction to machine learning focused on concepts

used in the successive chapters. It covers notions such as learning, supervised

training, neural networks, etc. The chapter is meant as a refresher and should

be su�cient to build some intuitions on the results presented in all subsequent

chapters. Note that, each chapter also comes with its own introduction, where

more specific notions to the subject treated in that chapter are introduced.

Chapter 3 contains work done jointly with Dr. Guido F. Montufar, Dr. KyungHyun

Cho and Prof. Yoshua Bengio. Most of the content of this chapter is taken from

two publications that explore the importance of depth for neural networks.

The first paper, On the number of response regions for deep feedforward net-

works with piecewise linear activations (Pascanu, Montufar, and Bengio, 2014),

was accepted at the International Conference on Learning Representations (ICLR)

2014 and was work carried out by me together with Guido Montufar and Yoshua

Bengio. In this work, I provided the main construction of the paper (Section 4)

and the special case in Section 5 and I was instrumental in defining the question

investigated by proposing to look at the problem from a computational geometry

perspective. The provided proofs have been, however, written together with Guido

Montufar, and he had a big role in improving these proofs. I also helped writing the

illustrative proof of Section 3, though the proof itself is a well known result. Most

of the text had been written jointly, where each author had a few passes improving

di↵erent sections of the paper. I argued intuitively the content of Lemma 2 and

Lemma 3, though the final provided proofs belong to Guido Montufar. The other
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results presented in the paper belong to my co-authors.

The second paper, On the Number of Linear Regions of Deep Neural Networks

(Montufar, Pascanu, Cho, and Bengio, 2014) is submitted to the Conference on

Neural Information Processing Systems (NIPS) 2014 and is work done jointly with

Guido Montufar, KyungHyun Cho and Yoshua Bengio. My main contribution was

the new geometrical construction used to prove that deep rectifier models can be

more e�cient than shallow ones. I regard this as one of the main contributions

of the paper. I helped, to some extent, in writing the formal description of the

number of regions as defined by how intermediate layers identify input regions

between them. I provided the illustrative toy experiment represented in Figure 1

and proposed the methodology by which we visualized the di↵erent responses of a

unit in a intermediary layer of the model. The folding metaphor and the concept of

identifying regions were proposed by Guido Montufar as an explanation of the proof

in Section 3. Both concepts were further developed by all authors of the paper.

The stability to perturbation analysis and the exploration of maxout networks also

belongs to Guido Montufar. As for the previous paper, the write-up was the joint

e↵ort of all co-authors. I regard both me, KyungHyun Cho and Guido Montufar

as having an important role in writing the text, with the role of my co-authors

somewhat bigger than mine.

The content of the Chapter 4 explores the connection between di↵erent recently

proposed optimization algorithms for deep learning, providing a unifying frame-

work. Based on the new understanding of these algorithms we provide several

possible variations and discuss one specific problem in non-convex optimization,

namely the saddle point problem. We first provide a more in-depth introduction

of the topic in Section 4.1.

Parts of Chapter 4 are based on the paper Revisiting Natural Gradient for

Deep Networks (Pascanu and Bengio, 2014) that was accepted at the International

Conference of Learning Representations (ICLR) 2014. This is joint work with

Prof. Yoshua Bengio. The derivation of natural gradient descent as a di↵erent

constrained optimization at each step was the result of a tight collaboration with

Dr. Guillaume Desjardins and Prof. Aaron Courville, work that was published in

Desjardins, Pascanu, Courville, and Bengio (2013). This derivation however was

also employed in our paper in Section 2, and it was modified for neural networks

in Section 2.1. The derivation of Section 2.1 is joint work with Yoshua Bengio.
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The relationship between natural gradient descent and Hessian-Free Optimization,

Krylov Subspace Descent and TONGA (Section 4, 5, 6) were derived by me. Imple-

mentation of the algorithm and experiments were also carried out by me. Section

7, 8 and 9 are contributions that I proposed to the paper. However some of the

fine details in all sections of this paper are the result of discussions with Yoshua

Bengio, and, specifically, the experiment carried out in Section 8 is inspired by

such a discussion. The original draft of the text mostly belongs to me, but both

me and Yoshua Bengio had several passes improving (sometimes considerably) the

write up of several sections. Guillaume Desjardins also provided useful comments

for improving the write-up of this paper.

Section 4.4 and 4.5 and all references to the saddle point problem or Saddle-

Free Newton method are based on the technical report On the saddle point problem

for non-convex optimization (Pascanu, Dauphin, Ganguli, and Bengio, 2014). This

represents joint work with Yann N. Dauphin, Prof. Surya Ganguli and Prof. Yoshua

Bengio. My contributions to this technical report are as follows. I proposed the

detailed description of how di↵erent optimization techniques behave near saddle-

points, Section 2 of the technical report. I proposed the generalized trust region

method framework and played a crucial role in defining a proper theoretical jus-

tification for our solution, the Saddle-Free Newton algorithm. This algorithm is

loosely based on the Square Newton method, an algorithm that I proposed as well

but which was excluded from the technical report for brevity. I contributed signif-

icantly to the specific proof provided in this technical report for the Saddle-Free

Newton, though all co-authors contributed to it with suggestions. Most of the tech-

nical report has been written by me with edits from my co-authors. Surya Ganguli

helped to greatly improve the literature review that motivates the need to address

saddle points, especially the statistical physics literature. All the experimental

results provided in the technical report had been carried out by Yann Dauphin.

Surya Ganguli and Yoshua Bengio helped define some of the experiments carried

out in this technical report.

Chapter 5 contains material published in (Pascanu and Jaeger, 2011; Pascanu,

Mikolov, and Bengio, 2013).

The first paper, A Neurodynamical Model of Working Memory, is work done

together with Prof. Herbert Jaeger and was published in the Neural Networks

journal in 2011. In this work we ask the question of whether recurrent models (in
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this specific case echo state networks) can exhibit memory able to store information

for an unbounded amount of time. We provide a specific model that, using hints

during training, can learn to exhibit such behaviour. My contribution to this

work consists in the specific model used to obtain this unbounded memory. I also

implemented and ran the experiments presented in the paper. The task itself was

jointly proposed by me and Herbert Jaeger (where Herbert Jaeger had an important

role in defining the question we attempted to answer). I helped in the write-up

of the paper. Specifically, I mainly focused on Section 2 and 3 of this work. The

introduction and all other sections (4 and 5) belong to Herbert Jaeger (especially

the mathematical formalism of Section 4).

The second paper, On the di�culty of training Recurrent Neural Networks (Pas-

canu, Mikolov, and Bengio, 2013), was published at the International Conference

on Machine Learning (ICML) 2013. It presents work done together with Dr. Tomas

Mikolov and Prof. Yoshua Bengio. In this paper we attempt to improve our un-

derstanding of two particular di�culties for training recurrent models and provide

heuristic solutions to them. My contribution to this work involved implementing

and carrying out all the experiments presented. The analytical description of the

vanishing and exploding gradients problem was carried out by me, though it is

heavily based on previous work published by Yoshua Bengio. The dynamical sys-

tem perspective I regard as the result of both I and Yoshua Bengio, where both of

us had equal contribution to this view. I believe to have proposed the geometrical

interpretation of Section 2.2. The clipping strategy belongs to Tomas Mikolov, and

the regularization term used to address the vanishing gradients problem is again

joint work between me and Yoshua Bengio (based on Yoshua Bengio’s intuition).

I contributed heavily to the write-up of the paper, though all co-authors provided

modification to the text improving, sometimes considerably, the clarity and flow of

the text.

How to Construct Deep Recurrent Neural Networks (Pascanu, Gulcehre, Cho,

and Bengio, 2014) is the basis of Chapter 6. This represents work done with

Caglar Gulcehre, Dr. KyungHyun Cho and Prof. Dr. Yoshua Bengio. This paper

was published at the International Conference of Learning Representations (ICLR)

2014. The main result of the paper, the di↵erent architectural changes that induce

depth in the model, I regard as my contribution. The operator view of recurrent

models resulted from a discussion between Yoshua Bengio, KyungHyun Cho and
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myself. I believe to have contributed to this view, though the main idea belongs to

Yoshua Bengio. The implementation of these models was carried out by me with

some help from Caglar Gulcehre and KyungHyun Cho. The experiments were

jointly carried out by me and Caglar Gulcehre. KyungHyun Cho had an important

role in the write-up of the paper, though all co-authors, including me, contributed

considerably to the text.

Finally, Chapter 7 provides a unifying discussion for this thesis.
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2 Background

In this section we provide a brief description of the main concepts of machine

learning necessary for understanding this thesis. We do not regard this section as

a complete overview of the field. Specifically there are many crucial concepts of

machine learning that are not closely related to the content of the subsequent chap-

ters which, for brevity, we do not cover. We also note that some of the definitions

provided might be somewhat restrictive (and would not directly cover the entire

spectrum of cases) in order to improve clarity.

2.1 Introduction to Machine Learning

Machine learning focuses on finding a suitable model f from a family F of mod-

els that approximates some desired behaviour. One can rely on either a parametric

or non-parametric model to learn the target mapping. A well known non-parametric

classifier is, for example, the Nearest Neighbour algorithm (Bishop, 2006), which

relies on the labels of the known examples near the current one in order to predict

its label. In what follows we will ignore such families of models and focus mainly

on the parametric ones.

A parametric family of models is the set of functions F = {f✓|✓ 2 ⇥}, where
f✓(x) = fF(✓,x) for some function fF : ⇥ ⇥ D ! T, where ✓ 2 ⇥ and x 2 D.
The function fF contains the prior knowledge that we use to construct our family

of models, while ✓ will be learnt and it identifies a specific member of this family.

The structure of fF and, by extension, that of F dictates the kind of solutions we

can obtain, limiting the type of behaviours the model can actually learn.

Learning is the process of finding the most suitable member f ⇤ of a family

of models F for solving some task T , which for a parametric family of models is

identical to finding the optimal parameter value ✓⇤ 2 ⇥. This usually takes the
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form of an iterative optimization process that minimizes some discrepancy measure

(also called loss or objective) between the behaviour of the model and the desired

behaviour. If ⇡ is some distribution over D and L is some suitable task dependent

loss, we can formalize this statement as follows:

f ⇤  argmin
f2F

EE
x⇠⇡ [L(x, f)] (2.1)

EE
x⇠⇡ [L(x, f)] is called the expected loss or generalization error and EE

x⇠⇡ stands

for the expectation over x sampled from the distribution ⇡. In practice, however,

we do not have access to this empirical distribution ⇡. We have to rely on a set

of examples D =
�
x(i) ⇠ ⇡|0 < i  N

 
from ⇡, which is called the training set or

training dataset. One approach to overcome this limitation is called the Empirical

Risk Minimization procedure which is described by the following equation:

f ⇤
ERM  argmin

f2F

1

|D|
X

x2D

L(x, f)def= argmin
f2F

REMP (D, f) (2.2)

We use REMP to denote empirical risk or the error on the dataset D. For

probabilistic models this procedure is equivalent to maximum likelihood learning.

2.1.1 Regularization

Unfortunately REMP (D, f) is a biased estimate of the expected loss for f . For

example, given a su�ciently flexible family of models F , one can easily end up

learning “by heart” the dataset D with out actually learning the correct mapping

for other samples from ⇡.

In order to estimate the generalization error (equation (2.1)) one has to use a

held-out set of samples from ⇡, Dtest, called the test set, where there is no overlap

between the training and test set (i.e. their intersection is the empty set). Mea-

suring the empirical risk on this set, REMP (Dtest, f) provides a measure for the

generalization error. Comparing the error obtained on the test set with the one on

the training set, we can see if the model is over-fitting or under-fitting.

A model is said to be over-fitting some training set D when the model is able to

obtain a very small error on the training set, though when tested on new data (which

was not part of this set) the error increases considerably. While this definition

is somewhat vague, if we consider also the training procedure (which iteratively
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updates the parameters of the model such that the training error is minimized), if

the error computed on the training set goes down as training progress, while the

error computed on the test set is increasing, then the model is over-fitting. A model

is under-fitting if both errors are still decreasing under training.

To avoid over-fitting there are usually two main approaches. One approach is

to change the family of models F used to one that is not su�ciently flexible to

over-fit the data. By doing so, we restrict the search space of functions f . If we are

to follow the example of over-fitting given above, it would be su�cient to remove

those functions that are able to memorize the training dataset with out knowing

the distribution ⇡.

Another standard approach is to use a regularization term (also called penalty

term). That is we rely on the following equation to find the optimum parameter

value ✓⇤ and hence the optimum function f ⇤:

✓⇤ERM  argmin
✓2⇥

REMP (D, f✓) + �⌦(✓), with � > 0 and 8✓ 2 ⇥ : ⌦(✓) > 0 (2.3)

The role of the additive regularization term ⌦(✓) is to restrict in some mean-

ingful way the search space for ✓, and therefore to restrict the flexibility of F . The

choice of ⌦ is model and task specific and there is no further assumption on ⌦ ex-

cept that it is di↵erentiable (specifically it does not have to be convex). The term �

is the weight of the regularization term and controls the importance of minimizing

⌦ versus minimizing REMP .

� can not be learnt as the other parameters, as it could lead to the trivial

solution � = 0. The value of � is chosen before learning, and we regard � as a

hyper-parameter of our family of model F . In general, models can have several

hyper-parameters, and, for deep neural networks, one has typically tens of them.

The process of selecting the value of the hyper-parameter � is called hyper-

parameter tuning or model selection. It involves using yet another independent set

of samples from our empirical distribution ⇡ called the validation set Dvalid (which

as before has an empty intersection with both the training and test set). We can

find the optimum values of these hyper-parameters by minimizing the empirical

risk on the validation set Dvalid, where the parameter ✓ considered for some fixed

choice of hyper-parameter values is found by minimizing the regularized error on
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the training set D :

�⇤ = argmin
�2R

REMP

✓
Dvalid, argmin

✓2⇥
REMP (D, f✓) + �⌦(✓)

◆
(2.4)

Equation (2.4) is written only in terms of a single hyper-parameter � 2 R.
Usually one relies on a grid-search where values for the di↵erent hyper-parameters

are proposed based on splitting the space into intervals using a grid (and consider

one value for each cell of the grid). Alternatively one can use manual tuning where

the researcher uses their intuition to propose new hyper-parameter values to eval-

uate based on previous observations. The best values for these hyper-parameters

are given in practice by the best performing values among the di↵erent propos-

als. Recently this process of tuning hyper-parameters has received more attention

(specifically due to the high number of hyper-parameters for a deep model) and

approaches such as random search (Bergstra and Bengio, 2012) and black-box op-

timization methods (Snoek et al., 2012; Bergstra et al., 2011) have been proposed.

One particular regularization technique frequently used in practice is early-

stopping. It relies on monitoring regularly, during the iterative optimization algo-

rithm used to train the model, the error obtained on the validation set and stopping

the algorithm as soon as the validation error starts increasing.

2.1.2 Supervised learning

The learning procedure might di↵er according to the task at hand. One can

usually split the di↵erent approaches into the family of Supervised learning methods

and Unsupervised learning methods.

For supervised learning the samples x 2 D take the form of a pair

x = (u, t) 2 U⇥ T. (2.5)

U and T are some sets of possible values for the pair (u, t). In such sit-

uations we are after learning the true conditional ⇡(t|u) based on the dataset

D =
�
(u(i), t(i)) ⇠ ⇡(u, t)|0 < i  N

 
of identically independently distributed sam-

ples.

A standard approach is to regard the model f✓ as defining a parametrized con-

ditional probability density function p✓(t|u). This association of a random variable
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whose distribution is somehow parametrized by f✓ allows us to use knowledge from

statistics and probability theory.

Classification

For classification, the task involves assigning a discrete label to every input

example u. A classical example is represented by the MNIST dataset, where the

input examples are images depicting a single digit. The task required by this

dataset is to recognize the digit in the current image and produce the right label

t. The set of labels therefore is T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Two-way classification refers to the special case when the cardinality of T

is 2. In this case we regard the output of the model f✓ as being the mean of a

Bernoulli distribution

p✓(t|u) =
(

1� f✓(u) , t = 0

f✓(u) , t = 1

We use the cross-entropy (which can be regarded as a similarity measure for dis-

tributions) between this conditional Bernoulli distribution and the true conditional

distribution ⇡(t|u) as our loss which results in :

LCE((t,u), f✓) = �t log p✓(t|u)� (1� t) log p✓(1� t|u)

= �t log f✓(u)� (1� t) log(1� f✓(u)) (2.6)

Multiple binary classification, a special case of Multitask learning, refers to

the case when for the same data point one is required to make several independent

binary predictions. One example could be automatic tagging for music, where for

the same song one would need to predict if several possible tags apply to this specific

song or not. In such case we model each binary decision as a two-way classification

and use an average over the cross-entropy of each random variable as our loss or

objective.

Multi-way classification describes the case when there are more than two

possible labels (which are mutually exclusive). It is a standard approach to use in

this case a one-hot encoding of the output. That is the output of the model is a n

dimensional vector, where n is the number of possible classes. To each dimension we
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assign a class and the value along that dimension depicts the score (or probability)

for the provided input to correspond to that class. The label t is therefore a vector

of 0, with value 1 on dimension k if the corresponding input belongs to class k.

In this case we rely on a Multinoulli 1 distribution for p✓(t|u). We use the

negative log likelihood as a loss measure and one can see that in the case of only

two classes this reduces to the cross-entropy used for the binary case. The formula

for negative log likelihood is as follows:

LNLL((t,u), f✓) =
X

j

�tj log p✓(tj|u) =
X

j

�tj log f✓(u)j (2.7)

Note that p✓(tj|u) refers to the probability of example u to belong to class j

and f✓(u)j refers to the j-th component of the vector f✓(u).

Regression

For regression the set T is continuous. Such situations arise, for example, when

the task involves modeling a reward function in reinforcement learning or motion

capture data (where the angle of each joint is a continuous value), etc. One usually

makes the assumption that p✓(t|u) is an isotropic Gaussian distribution with some

fixed standard deviation � and the mean given by f✓, i.e. p✓(t|u) = N (t; f✓(u), �).

The loss function in this case is usually taken to be the well known mean square

error criterion:

LMSE((t,u), f✓) = (t� f✓)
2 (2.8)

This criterion can be recovered from the negative log likelihood criterion under

the Gaussian assumption if we assume � to be constant and equal to 1, and remove

terms that do not depend on ✓.

1. Multinoulli refers to a multinomial distribution where the number of trials is fixed to 1. The
name reflects the correspondence between Bernoulli and the Binomial distribution. See Murphy
(2012) for more information.
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2.1.3 Unsupervised Learning

For unsupervised learning we do not have a label assigned to each input ex-

ample u and the task is about discovering some structure hidden in the set of

examples. There are a wide range of algorithms that fall into this category.

Among the main subcategories we have clustering approaches such as k-Means

(Lloyd, 1982) which attempts to divide the data into several clusters according to

the similarity between the examples. Dimensionality reduction refers to techniques

for reducing the dimensionality of the input while preserving the most important

characteristics of the data. Approaches include Principal Component Analysis

(PCA) or t-SNE (van der Maaten and Hinton, 2008). Density estimation requires

one to estimate the underlying distribution ⇡ from which the examples in the

training set D were sampled, as how, for example, is done by the RBM model

(Freund and Haussler, 1994).

This work is not focused on unsupervised learning and therefore we will not go

into any depth to explain these di↵erent techniques. However, it is worth mention-

ing that the task of next step prediction, used to train recurrent neural networks,

is a form of unsupervised learning. In this specific situation we provide a sequence

u which is given by a list of consecutive values u[1],u[2], . . .u[T ]. The model needs

to learn to predict u[k] given u[1], . . .u[k�1], and therefore the task can be framed as

learning a conditional distribution ⇡(u[k]|u[k�1], . . . ,u[1]). One can choose to regard

this as a supervised task where t = u[k], though, fundamentally, we are learning

the structure of u in the absence of any label.

2.2 Neural Networks

Artificial Neural Networks (ANN) are a specific family of models. Figure 2.1

depicts the layout of a typical Multilayer Perceptron (MLP). The basic idea be-

hind this model can be traced back to Rosenblatt (1958). Let us first intuitively

introduce this model.

Any neural network is formed from a set of units (neurons) that are split into

layers (subsets of neurons). Conceptually, there are usually three types of layers:

input layers, hidden layers and output layers. The values of the neurons in a input
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Figure 2.1: Multilayer Perceptron. Neurons are represented as circles, and layers as rows of
neurons. Dark cyan dashed arrows represent the bias of each neuron, which is illustrated here
as a weighted connection from a special unit that always has a constant value of 1. Black solid
arrows are the normal inter-neuronal connections.

Output neurons

Last hidden layer

Second hidden layer

First hidden layer

Input layer

bias = 1

layer are fixed by (part of) the provided input to the model (u introduced in (2.5)).

A hidden layer is a set of unobserved units. Their values represent intermediate

computations of the ANN. Finally, an output layer is observed and the union of all

output layers is the output (y 2 T) computed by the model. The parameters of such

models (the weights and biases) are learnt by an iterative optimization technique

such that the output of the model y matches the target t provided by the user

(or, from a probabilistic perspective, y matches some property of the distribution

p(t|u), like the mean in the case when p(t|u) is assumed to be a Gaussian). The

specific distance measure used depends on the model and task.

In Figure 2.1, each neuron is represented by a circle. The layers are represented

as rows of circles. The input layer is the first row from the bottom of the figure,

where the circles are filled with a light green color. In our notation the input layer

will be denoted by u. The following layers, up to the last one are hidden layers,

and their value collected in h(1),h(2), ..,h(k). k is the number of hidden layers the

model has. Each hidden layer is usually some nonlinear transformation of the input.

The last layer is the output layer, denoted by y. Each layer, usually, has a bias

associated, which is also part of the parameters of the model. They are meant to

model the average activation of the corresponding neuron, and there is a bias term

for every unit in a layer. In Figure 2.1 biases are represented as connections with
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a special unit (called bias in the figure) that has a constant value of 1. In our

notations we would use b(1),b(2), . . . ,b(k) for biases. These vectors collect all the

dark cyan dashed arrows (weights) in Figure 2.1. The connections between any

two consecutive layers are collected in matrices denoted as W(1),W(2), . . .W(k).

The weights and biases (W;b) represent the parameters of the model, which we

will denote by ✓ sometimes. The role of this network is that when provided some

input u, it should produce some output y which is close (or identical) to the

corresponding target for that input t. Learning is the process of minimizing the

discrepancy between the output of a model and the desired target.

The connectivity pattern of a neural network is usually decided at the layer

level, by specifying which layer is connected to which. This forms a computational

graph. If the connectivity generates cycles (or this graph contains cycles), then we

say the network is recurrent, otherwise it is a feedforward model. If the network

has more than one hidden layer (layer of unobserved variables) we say the network

is deep, otherwise it is shallow. By adding more hidden layers to a model, a shallow

model can be converted into a deep one. Recurrent networks, even if they have a

single hidden layer, are usually regarded as deep models.

Given a set of layers and the connectivity pattern, we can now define mathe-

matically the computation carried out by the network. The value of any neuron

j, in layer i is defined as the weighted sum of all incoming connections (that is all

neurons belonging to layers connected to layer i, each multiplied with the weight

of the corresponding connection) and of the corresponding bias term b(i)j , to which

an activation function �(i) : R ! R is applied (the activation function is usually

applied element-wise, independently to each neuron of the layer). For the MLP,

the hidden layers are ordered. Each layer is connected to the next one, where the

input is connected to the first hidden layer and the last hidden layer is connected

to the output layer. This translates into equations of the following form (for the

i-th layer):

h(i) = �(i)(W(i)h(i�1) + b(i)) (2.9)

where �(i) is a function fixed beforehand and can be layer specific, or the same

function for all layers. h(i) represents the i-th layer in this ordering, and h(i�1) the

previous layer. W(i) is the weight matrix associated with this layer and b(i) is the

bias. Note that one can not compute the value of layer i without first computing
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the value of the layer below. The computations carried here can be seen as a

successive composition of simpler functions. A hidden unit at layer i can be seen as

detector of a feature in the input, feature somehow encoded in the weights needed

to compute this value. One intuition of deep learning is that units in higher layer

will discover more complex feature compared to those on the first layer.

Popular activation functions � are the sigmoid, tanh or rectifer function (which

in practice are applied element-wise):

sigmoid(x) =
1

1� e�x
(2.10)

tanh(x) =
ex � e�x

ex + e�x
(2.11)

rect(x) =

(
x , x > 0

0 , otherwise
(2.12)

For the output layer the activation function usually depends on the task at hand.

For example in the case of binary classification or multiple binary classification the

sigmoid activation from Equation (2.10) is used (which is guaranteed to have values

in [0, 1]). For multi-way classification one relies on the softmax activation described

below, which is not applied independently to each of the O neurons of the output

layer, but rather relies on the whole vector of output activations. For regression

one typically uses the identity function id.

softmax(x)i =
exi

PO
j=0 e

x

j

(2.13)

id(x) = x (2.14)

2.2.1 Convolutional neural networks

Convolutional neural network are a special kind of feedforward models inspired

by the early work of Hubel and Wiesel on the cat’s visual cortex(Hubel and Wiesel,

1968). From this work we know that neurons of the visual system have a complex

arrangement and that these cells respond to only a small region of their input

space called a receptive field. This local connectivity allows for better exploiting

the spatial structure of the visual stream. These observations had inspired work

18



such as the NeoCognitron (Fukushima, 1980) or LeNet-5(LeCun et al., 1998).

Convolutional networks, directly based on LeNet-5, are composed from several

convolutional layers. Each layer’s output is computed by convolving the input

(which usually preserves its 2D topological structure) with a set of kernels. The

kernels themselves, usually called filters, are learnt. They are the parameters of the

layer. Some nonlinear function like the sigmoid or rectifier is applied to the result of

this convolution. This result is sometimes refered to as a feature map. The di↵erent

feature maps obtained for di↵erent kernels are also called channels. Additionally,

one also applies a pooling layer (or sub-sampling layer), where the output of the

convolution with some filter is divided in tiled squared regions and each regions is

summarized by a single value. This value can be the maximal response within the

region in case of max-pooling or the average value of the region in case of mean-

pooling. Other pooling operations are possible. Figure 2.2, taken from Desjardins

(2009) depicts this architecture.

Figure 2.2: Depiction of the operations carried out by a convolutional neural network. This
picture was taken from Desjardins (2009)

2.2.2 Universality of single hidden layer networks

An argument for why neural networks are a viable model for learning is the

universal approximation property. This property states that any smooth function

f : IU ! RO, from the unit hypercube to RO, can be approximated arbitrarily well

by a single hidden layer MLP (Hornik et al., 1989). The proof is non-constructive.

Constructive proofs (for two hidden layer MLPs) can be seen in Poggio and Girosi

(1989); Scarselli and Tsoi (1998).

The “gotcha” with these proofs, is that they suggest the need of a large (pro-

hibitive) number of hidden units, even for conceptually simple functions, which

would make the model impractical for any application.
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In reality, little is known about the minimum required number of units, or even

about the optimal layout. Barron (1994) provides the following lower bound on the

risk of a one hidden layer MLP fMLP , trained to approximate a function with one

dimensional output y = f(u):

R(fMLP ) = O

✓
C2

f

H

◆
+O

✓
HU

N
log(N)

◆
,

where H is the number of hidden units, U is the dimensionality of the input space,

u 2 IU , N is the number of data points in the training set D, and Cf is a certain

spectral measure of complexity of the target function f . This equation suggests

that, with an increased number of hidden units, more samples N are needed to

train the model (by this we mean that for our optimization algorithm to actually

learn the relationship between u and t, rather than learning the training set by

heart we need to have more training examples). This means that large networks are

not impractical only because of their computational complexity, but also because

of their data demands which can be very costly or impossible to collect.

Barron (1993) also provides a bound for the risk in case of a fixed number of

hidden units H, namely:

R(fMLPwith L units)  4Cfp
n✓

, (2.15)

where n✓ is the number of adjustable weights in the model. In the same paper,

Barron (1993), the bound for a linear mixture of fixed n✓ basis functions is also

provided. This is a widely used technique based on approximating function (Taylor

expansions, Fourier expansions).

R(linear combination of n basis functions)  C
Cf

U

✓
1

n✓

◆ 1
U

, (2.16)

where C is some constant. Comparing these two results is a nice theoretical incen-

tive to study neural networks, since it says that, as the dimensionality of the input

increases, you are better o↵ using neural networks to approximate the function

than using more standard methods like Taylor expansions.
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2.2.3 Backpropagation algorithm

Neural networks define complex non-linear functions (when we have at least one

hidden layer) for which there is no closed form solution to compute the optimal

parameters. Instead, one has to recurse to iterative methods like Gradient Descent

(GD) that rely on the gradient at each step to decide how the weights and biases

need to be changed.

Intuitively, computing the gradient of the loss with respect to the parameters

seems to require O(n2
✓) computations. Think of looping over the n✓ parameters

and compute the gradient of the loss with respect to the current parameter (order

O(n✓)) by, say, a finite di↵erentiation approach. In reality there are a lot of shared

computations between these iterations of the loop, meaning that these gradients

can be all computed in O(n✓). The backpropagation algorithm, introduced in

Rumelhart et al. (1986), does this by relying on two passes through the model, the

forward pass and the backward pass. In the forward pass the output of each neuron

is computed and stored (starting from the input towards the output units). The

backward pass works in reverse. It starts from the output and moves towards the

input applying the chain rule at each step to compute the partial derivative of the

output with respect to that layer.

2.2.4 Pretraining

In the case of neural networks, pretraining is a strategy proposed in Hinton and

Salakhutdinov (2006) for training deep models. According to this strategy, for each

layer of a deep network some unsupervised model is considered, as for example a

Restricted Boltzmann Machine or denosing autoencoder. This models are trained

to approximate the distribution of their input and they share parameters with the

deep feedforward model.

Specifically one starts with the first layer and trains the unsupervised model

to model the input distribution. Once this process is done, the weights of the

unsupervised models are used to initialize the weights of the first layer of the deep

feedforward model. Then the input is projected through this first layer and the

unsupervised model corresponding to the second layer is trained on this projection.

Once the whole model is initialized using this strategy, we have a final stage of

training where the deep model is trained on the desired task (process that is called
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fine-tuning the model). Recently it has been shown that this complex process is

not needed in order to train deep models and therefore we will not introduce the

concept of pretraining in any more details.

2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a special class of neural network models,

that have at least one recurrent connection (connection that creates a loop in the

graph). The following introduction is loosely based on chapter 9 from Jaeger (2009).

Figure 2.3 shows the information flow for an RNN compared to a feedforward

network.

Output neurons

Last hidden layer

Second hidden layer

First hidden layer

Input layer

bias = 1

(a) Feedforward network

Output neurons

Input layer

bias = 1

Recurrent Layer

(b) Recurrent network

Figure 2.3: Depiction of how information flows in (a) a feedforward network versus (b) a
recurrent network. In the first case the information travels from the input to the outputs as
indicated by the red arrow going from inputs towards the outputs. In the second, it travels
through loops. The red arrow forming a loop indicates that information fed to the model can get
trapped inside the model and stay in its memory for several steps or forever (by this we mean
that previously received inputs can influence the result of new inputs for an undefined period of
time). Note the recurrent connections in (b).

RNNs are qualitatively very di↵erent because they do not operate only on a

fixed size input space but also on an internal state space containing a transforma-

tion of what the network has seen up to the current time step. This is equivalent to

an Iterated Function System (Kalinke and Lehmann, 1998) or a Dynamical System

(Horne et al., 1998; Casey, 1996). The state allows the modelling of temporal-

ly/sequentially extended dependencies over unspecified (and potentially infinite)
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intervals of time. Compared to feedforward networks, that can approximate non-

linear functions arbitrarily well, RNNs are computationally as powerful as any

Turing machine (Siegelmann and Sontag, 1991).

Restating this claim, feedforward models learn arbitrary maps that go from

some input u to a desired target t. Recurrent neural networks have memory,

and can approximate any dynamical system (similar results, with an emphasis on

dynamical systems, are shown in Siegelmann and Sontag (1995)). This means

that a recurrent network can encode and execute any “computational algorithm”

that one can spell out. Based on the inputs seen in the past, the network can

simulate branching behaviour like if-else or simply use past inputs to decide on the

current ones. These theoretical advantages emphasize the importance of recurrent

connections and implicitly the importance of memory.

The proof provided in Siegelmann and Sontag (1991) focuses on showing that

a recurrent neural network can compute any function that is computable by a

Turing machine, which implicitly means it can simulate the logic of any computer

algorithm. Showing the reverse, that a Turing machine can simulate a function

generated by a recurrent model is easy if we assume the state of the model to only

take rational numbers Q. If we allow the recurrent neural network to use actual real

numbers (which can not be simulated on a computer), Siegelmann (1995) argues

that the model can simulate some chaotic dynamical systems like the “shift map”

that might not be computable by a Turing machine. Hypercomputation is the term

coined to describe such behaviours.

Beside assuming the activations to be rational, the proof assumes the use of a

hard sigmoid activation function � for the hidden layers, which is 0 for any value

below 0, linear up to 1 and 1 for any value larger than 1. The core idea is to simulate

a push-down automaton with three unary stacks which has been previously shown

to be as powerful as a Turing machine. The content of each stack is given by a some

positive integer s, which can be represented by the binary rational number 0. 1 . . . 1| {z }
s times

.

The pop operation on the stack is given by qs 7! 2qs � 1, while push corresponds

to qs 7! 1
2
qs +

1
2
. The control logic (possible decisions that the model has to do

based on its state, the stacks and the input symbol) can be hand defined in the

weights of the recurrent model. To avoid the need for higher order connections

(i.e. multiplications that can be used to gate the desired behaviour based on the

control signal), one can rely on negative values which will be truncated to 0 by
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the activation function. We invite the interested reader to check the original paper

(Siegelmann and Sontag, 1991) for more details.

Another approach for showing the ability of the recurrent network to simulate

a Turing machine is taken in Hyötyniemi (1996). Here, a specific structure for the

recurrent connection is given to define the four basic operations of any computa-

tional language: no operation, increment, decrement and conditional branch. The

model uses a hidden unit for each variable of the program, and a hidden unit for

each row of the program, with the exception of conditional branches which require

three di↵erent hidden units. The activation of the recurrent network is the recti-

fier activation function (equation (2.12)), and the weights are either 1 or �1. The
values of any variable are, therefore, positive integers. Each operation is given by

a specific connectivity pattern between the corresponding rows and variables. For

example doing nothing at row i simply corresponds to a connection of weight 1

between the unit corresponding to row i and the unit corresponding to row i + 1.

Please see the original paper for details of these connection patterns. The proof

that a recurrent network can simulate any Turing machine is beyond the scope of

this introduction and we will not go into any further detail.

Research on recurrent networks has been carried on since the 80’s (Elman, 1990;

Werbos, 1988, see, e.g.) though it had limited success. One main reason brought

up to explain this is the di�culty of training these models by gradient descent

(Hochreiter, 1991; Bengio et al., 1994; Hochreiter and Schmidhuber, 1997). There

is, however, a plethora of architectures and specific training algorithms that have

been proposed in the literature.

The Time-Delay Neural Network (TDNN) (Waibel, 1989; Sejnowski and Rosen-

berg, 1988) is a compromise between feedforward networks and recurrent neural

networks. In order to provide context, a fixed window of the input data is provided

at every time step to a feedforward model. The window is composed of the current

frame plus a delayed version of previous inputs at each level of the architecture.

While this model can be trained using backpropagation and can take advantage

of all the findings for feedforward networks, the maximal acceptable context has to

be fixed beforehand. This means that any correlations with events that happened

before the maximal delay will not be considered by the model. Another drawback is

that the dimensionality of the input increases considerably, imposing larger models

that require larger amounts of data and time.
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In a simple recurrent neural network, or Elman network, introduced in Elman

and Zipser (1988); Elman (1990), there is a hidden layer, a context layer and an

output layer. The hidden layer receives connections from the context and the

input, while the output receives connections from the hidden layer. The context

receives fixed 1:1 connections from the hidden layer (these feedback connections

become the identity matrix). For a Jordan network (Jordan, 1990; Cruse, 2009),

the context layer receives connections from the output instead of the hidden layer

and additionally there are fixed 1:1 connections from the context layer to itself.

Typically the context layer for a Jordan network is called a state layer. The fixed

connections makes learning easy as one can rely on the classical backpropagation

algorithm.

Long-Short Term Memory Networks have a considerably more complex con-

nectivity pattern, in which central recurrent connections are only between a unit

and itself (Hochreiter, 1991; Hochreiter and Schmidhuber, 1997). A more detailed

description of LSTMs will be provided in Section 2.3.5.

Hierarchical Recurrent Neural Networks are yet another proposal (El Hihi and

Bengio, 1996), where we have several hidden layers, each working at a di↵erent

time scale, in order to answer to some of the issues of training recurrent networks.

Previously, in Schmidhuber (1992), a stacked (or deep) version of RNN is also

provided. However, all layers in this architecture receive as input the training

data samples 1, and higher layers are mostly used to improve performance on the

misclassified examples of the lower layers. In contrast, El Hihi and Bengio (1996)

trains the layers jointly, where the higher layers receive input from the lower ones.

This corresponds to a more standard understanding of a deep model.

Recursive Self Organized Maps (Voegtlin, 2002) have a very specific training

algorithm, based on the self organizing strategies used by Kohonen maps (Kohonen

et al., 2001).

Among training algorithms, Backpropagation Through Time (Werbos, 1988),

an extension of backpropagation to recurrent neural networks is the most used ap-

proach. Another algorithm is Real Time Recurrent Learning (Williams and Zipser,

1989) which is well suited for online learning though fairly expensive in terms of

computations. Extended Kalman Filter methods (Puskorius and Feldkamp, 1994)

relies on the curvature of the error function and was reported to perform well in

1. Higher layers also receive some encoding of the index of the current time step.
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practice. The Atiya-Parlos learning rule (Atiya and Parlos, 2000) constructs vir-

tual targets for the hidden states and then learns the optimal weights to obtain

said targets. Hessian-Free Optimization (Martens and Sutskever, 2011) is a second

order method that was recently proposed. We will describe these algorithms in

more detail in Section 2.3.3.

Evolutionary strategies (Schmidhuber et al., 2007), have also been used to train

recurrent networks. In the case of Echo State Networks or Liquid State Machines

(Jaeger, 2001; Maass and Bishop, 2001; Lukoševičius and Jaeger, 2009), the recur-

rent weights are not learnt, but actually sampled from hand-tuned distributions.

And this is just a short enumeration of a large variety of models and training

techniques.

2.3.1 Formal description of Recurrent Neural Networks

Recurrent Neural Networks expect the input to be presented as a time-series,

defined as follows:

Definition 1 (Time-series). A time-series is an ordered list of values u[1],u[2], . . . ,u[T ],

where u[t] 2 U. We are interested in modelling time-series where there is a temporal

correlation between events at di↵erent time steps, that is the sequence is generated

by a stochastic process U such that :

u[t] ⇠ P (U[t]|U[t�1] = u[t�1],U[t�2] = u[t�2], . . .) (2.17)

We will call two time-series {u}1tT and {y}1tT dependent, if the underlying

stochastic processes that generate those two series are dependent.

If we consider a dataset D where every pair (u(i), t(i)) is formed of two dependent

time-series of the same length, then, considering only discrete time recurrent neural

networks, we can formally define these models by the following recurrent relations:

h[t] = �(W(rec)h[t�1] +W(in)u(i)
[t] + b(rec)) (2.18)

y[t] = �(out)(W(out)h[t] + b(out)) (2.19)

where t 2 N, a positive integer, t  T , indicating the current time step. Note

that the subscript [t] refers to the time step (i.e. which of the input step from the
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sequence of inputs, and subsequently the value of the model for the corresponding

input step). This is di↵erent from the upperscript we use to denote the value of

di↵erent layers (whose value corresponds to the same static input). Or when the

subscript or upperscript is used for the input or target, the subscript refers to the

time step within the sequence (wich element of the sequence), while the upperscript

refers to an index among the di↵erent sequences in the dataset (which sequence).

The weights W(rec),W(in) and W(out) are the weights for the connections amongst

hidden units, the connections from the input to the hidden units and from the

hidden units to the output units respectively. The bias terms are given by b(rec)

and b(out).

u(i)
[t] 2 U, y[t] 2 T, h[t] 2 RH represent the values, at time step t, of the input

units, output units (prediction of the model) and hidden units respectively. The

vector h[0] is usually fixed to a constant. � is the activation function of the hidden

layer, usually tanh. �(out) is the activation function of the output layer. The

purpose of training is to make the recurrent model, when provided with a sequence

u(i), to produce a sequence similar to t(i).

Recurrent networks can be applied to non-temporal data by either considering

one of the space dimension to be the “time”, as done originally in Graves et al.

(2007) or we have done in Pascanu and Jaeger (2011) or by repeating the same

input at each time step, or even by just providing no input or an input just for the

first step. In the last situation we expect the model to show some specific behaviour

based on the initial signal. For example, a recurrent neural network can be used

to simulate inference in the MP-DBM model Goodfellow et al. (2013), case where

it only receives an initial input at the first time step.

Also, while formally it is easier to define the target as being of the same length

as the input, the value of the output units might be irrelevant for many of the time

steps. One common case is when we care only about the output value at the end

of the input sequence, or when the output is irrelevant for some subset of steps.

One example of the second case is given in Honkela et al. (2006). In these cases,

when computing the cost, we simply add only the step-wise errors obtained at the

relevant time steps.
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2.3.2 Backpropagation Through Time

Backpropagation Through Time (BPTT) is an extension of the popular back-

propagation algorithm from feedforward network and the most widely used tech-

nique to evaluate the gradients of RNNs.

We start by deriving the gradients with respect to the output weights W(out),

gradients that do not depend on the recurrent weights:

@L
@W(out)

=
X

1tT

@L[t]

@y[t]

@�out(W(out)h[t] + b(out))

@W(out)
(2.20)

L represents some discrepancy measure between the output of the model and the

desired target (and it is a choice that the practitioner has to make). The gradient

with respect to the output bias b(out) has a similar form. The tricky gradients are

those involving the recurrent weights. To resolve the recurrent connections we rely

on unfolding the model in time, as depicted in Figure 2.4. That is, for each time

step, we construct a clone of the hidden state and replace the recurrent connections

of the model to direct connections that go from the hidden state at time t�1 to the

hidden state at time t. By doing so we obtain a very deep network, but which has

tied weights between every layer. The backpropagation through time algorithm is

obtained by simply applying the backpropagation algorithm on this graph.

{u}
{h}

{y}

(a) Recurrent neural network u[1]

u[2]

u[T�1]

u[T ]

h[0]

h[1]

h[2]

h[T�1]

h[T ]

y[1]

y[2]

y[T�1]

y[T ]

(b) Recurrent network unfolded in time

Figure 2.4: Unfolding a recurrent neural network in time. (a) the original network. (b) the
deep feed forward network obtained by unfolding. The weights between any two layers (black
solid arrows) are tied. The same holds for the input to hidden weights (dashed green arrows)
or hidden to output weights (dot-dashed red arrows).The bias was omitted for clarity, as well as
some possible connections (e.g. the input is connected to all hidden units)

We will first introduce some new notation before providing the equation de-

scribing the gradients with respect to the recurrent weights W(rec). The gradients
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with respect to W(in) or b(rec) will have the same form.

Definition 2 (Immediate derivative). Let h[t] be the result of applying t times

some recursive equation h[k] = f(h[k�1], ✓). The “immediate” partial derivative
@+

h[t]

@✓ is the derivative of h[t] with respect to ✓ where h[t�1] is considered a constant

with respect to ✓.

Using Definition 2 we can write the gradient as:

@L
@W(rec)

=
TX

t=1

@L[t]

@h[t]

@h[t]

@W(rec)

=
@L[T ]

@h[T ]

@+h[T ]

@W(rec)
+
@L[T ]

@h[T ]

@h[T ]

@h[T�1]

@+h[T�1]

@W(rec)
+

T�2X

t=1

@L[T ]

@h[T ]

@h[T ]

@h[t]

@+h[t]

@W(rec)

+
@L[T�1]

@h[T�1]

@+h[T�1]

@W(rec)
+

T�2X

t=1

@L[T�1]

@h[T�1]

@h[T�1]

@h[t]

@+h[t]

@W(rec)

+ . . .

+
@L[1]

@h[1]

@h[1]

@W(rec)

=
TX

t=1

@L[t]

@h[t]

"
tX

k=1

@h[t]

@h[k]

@+h[k]

@W(rec)

#
(2.21)

Figure 2.5: Flow of gradient signals in a recurrent model. Green indicates the instantaneous
component, while red the contribution coming from the future.

@L
t+1

@h
t+1

L[t+1]L[t]L[t�1]

h[t+1]h[t]h[t�1]

u[t�1] u[t] u[t+1]

@L[t]

@h[t]

@L[t�1]

@h[t�1]

@h[t+2]

@h[t+1]

@h[t+1]

@h[t]

@h[t]
@h[t�1]

@h[t�1]

@h[t�2]

In the derivation of Equation (2.21) we use the blue color to indicate the two

terms that get multiplied by
@+

h[T�1]

@W(rec) . These are
@L[T ]

@h[T ]

@h[T ]

@h[T�1]
and

@L[T�1]

@h[T�1]
. In red

we show the term that gets multiplied by
@+

h[T ]

@W(rec) , namely
@L[T ]

@h[T ]
. Note that one can
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obtain the sum of the terms for
@+

h[T�1]

@W(rec) from the one for
@+

h[T ]

@W(rec) by first multiplying

with
@h[T ]

@h[T�1]
and then adding

@L[T�1]

@h[T�1]
. This holds also for the subsequent steps and

indeed it is the key observation behind BPTT.

Algorithm 1 Backpropagation Through Time

Let h0 be the initial state of the recurrent network, W(rec),W(in),W(out) the
weights, L the loss function, {u} the input and {t} the target.

1: Initialize gW(rec),gW(out),gW(in) with 0.
2: for t = 1 to N do
3: h[t]  �(W(rec)h[t�1] +W(in)u[t])
4: y[t]  �out(W

(out)h[t])
5: end for
6: gW(out)  

�
@L(y[T ],t[T ])/@W(out)

�

7: g
h

 
⇣

@L(y[T ],t[T ])/@h[T ]

⌘

8: gW(in)  g
h

·
⇣

@+
h[T ]/@W(in)

⌘

9: gW(rec)  g
h

·
⇣

@+
h[T ]/@W(rec)

⌘

10: for t = T-1 down to 1 do
11: g

h

 g
h

·
⇣

@h[t+1]/@h[t]

⌘
+
⇣

@L(y[t],t[t])/@h[t]

⌘

12: gW(out)  gW(out) +
�
@L(y[t],t[t])/@W(out)

�

13: gW(in)  gW(in) + g
h

·
⇣

@+
h

t/@W(in)

⌘

14: gW(rec)  gW(rec) + g
h

·
⇣

@+
h

t/@W(rec)

⌘

15: end for

We can now define an e�cient algorithm for computing the gradients by looping

backwards in time, from T to 1 and constructing recursively the terms that have

to be multiplied by
@+

h[k]

@W(rec) . This results in a time complexity of ⇥(n✓T ), with a

space complexity of ⇥(HT ) (Williams and Peng, 1990), where n✓ is the number of

weights, H is the number of hidden units and T is the length of the sequence.

Pseudo-code describing BPTT is provided as algorithm 1. Figure 2.5 depicts

the flow of the gradients backwards in time and can be used as a map to figure

out the BPTT algorithm. It shows, at each time step going backwards, the two

terms that need to be considered, namely the instantaneous contribution and the

rescaled contribution from the future.
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2.3.3 Other algorithms for evaluating the gradients and for

training recurrent models

Real Time Recurrent Learning (RTRL)(Williams and Zipser, 1989) is another

algorithm for evaluating the gradients of a recurrent model. The approach is math-

ematically straightforward and, at least in principle, suitable for online learning

(where we only have access of a training sample at each step of the iterative al-

gorithm, and can not access the whole dataset before hand). The algorithm is

obtained by di↵erentiating the equations describing the network dynamics. We

provide below the equation for W(rec). For other weight matrices the equations are

very similar.

@h[t+1]

@W(rec)
=
@h[t+1]

@h[t]

@h[t]

@W(rec)
+
@+h[t+1]

@W(rec)
(2.22)

The first term of the equation corresponds to the implicit e↵ect due to the net-

work dynamics (it describes how, via these parameters, the current state influences

future states of the model), while the second term represents the explicit or instan-

taneous contribution to the gradients. In blue we indicate the factor
@h[t]

@W(rec) which

is computed recursively.

Implementing RTRL means propagating Equation (2.22) forward in time. This

yields a complexity in the order of ⇥(n2
✓T ), where n✓ is the total number of weights

in the model and T is the number of steps taken by the model (length of the input

sequence). Because it grows with the square of n✓, this algorithm can be prohibitive

even for medium sized networks.

A di↵erent approach for training RNNs, introduced in Puskorius and Feldkamp

(1994), is to apply the Extended Kalman Filter algorithm. In this view, we assume

there exist a set of weights ✓⇤ that solves the task. We then assume that these

weights are the state of the Kalman filter, and that the output is a time dependent

observation function of these weights (we need to make the input of the model part

of the output function and hence we get the time dependent function).

Training the network in this framework becomes equivalent to estimating the

state ✓⇤ from an initial guess and a sequence of outputs. Compared to SGD where

the gradients are evaluated by either BPTT or RTRL, EKF falls into the category of

second order methods since it makes use of the curvature information (the Hessian).

Another method in this same category is the Hessian-Free Optimization (Martens
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and Sutskever, 2011) which is a truncated Newton approach to a second order

method. We showed in Pascanu and Bengio (2014) that Hessian-Free Optimization

is equivalent to natural gradient descent and therefore one can see it as a first order

method rather than a second order one.

The Atyia-Parlos rule provides another approach for computing the gradients of

the model. In this approach we construct “virtual targets” for the hidden state by

considering the gradient of the cost with respect to the unfolded hidden states of the

model. Based on these targets, one can now use a closed form solution that gives the

optimum weights for achieving the desired behaviour. This algorithm was further

modified in Steil (2004), where the Backpropagation Decorrelation algorithm, an

approximation of the original Atyia-Parlos rule with a lower computational cost is

explored.

As we will also state in Section 2.3.7, there is no good benchmarking of these

di↵erent approaches on the same task. So, in some sense, there is no good evi-

dence that some method is better than another. As argued in Atiya and Parlos

(2000) many of these algorithms result in computing the same gradients. In general

convergence analysis is not available for these models as they are non-convex.

2.3.4 Di�culties of training recurrent networks

In Hochreiter (1991); Bengio et al. (1994); Hochreiter and Schmidhuber (1997)

two specific problems with training recurrent neural networks by gradient descent

are described. To quickly summarize them let us repeat the equation of the gradi-

ents with respect to the recurrent weights, previously given in equation (2.21), and

use colour coding to indicate the di↵erent terms involved.

@L
@W(rec)

=
TX

t=1

@L[t]

@h[t]

 
tX

k=1

@h[t]

@h[k]

@+h[k]

@W(rec)

!
(2.23)

The most important term in this equation is the Jacobian
@h[t]

@h[k]
depicted in red

which takes the form of a product of Jacobians

@h[t]

@h[k]
=

t�1Y

j=k

@h[j+1]

@h[j]
.

32



All these Jacobians have a very similar form, being equal to the multiplication of

a diagonal matrix which has �0(h[j+1]) on the diagonal and W(rec)T .

Bengio et al. (1994) argues that the product of t � k matrices can behave

similarly to a product of t � k real numbers. If all numbers are smaller than

1, and we multiply them together, their product will go exponentially fast to 0

(exponential in t� k). The same is true for the norm of t� k matrices if all their

singular values are smaller than 1. This behaviour is called the vanishing gradient

problem.

If all numbers are larger than 1, on the other hand, the norm of their product

will quickly grow towards infinity, exponential in t� k. If the matrices are aligned

along some direction (the eigenvector of the dominant eigenvalue are aligned), and

the corresponding singular value is larger than 1, a similar behaviour can happen

when multiplying t�k matrices. This results in an explosion of the gradient norm,

and hence it bears the name of the exploding gradient problem.

2.3.5 Long-Short Term Memory Networks

In Hochreiter (1991); Hochreiter and Schmidhuber (1997) the Long short-term

memory network is proposed, which is meant to address the vanishing gradient

problem. This is achieved by altering the structure of the network, where a subset

of neurons (or all of them) are replaced by memory cells. Figure 2.6 depicts such

a cell. Because of the linear activation of the single neuron in the cell, with a

self connection weight of 1, the unit behaves like a memory bu↵er, being able to

store one bit of information for potentially unbounded periods of time. The linear

activation and self connection of value 1 also means that the gradient through this

connection does not lose norm, and hence does not vanish.

Each memory cell in the recurrent model is connected to any other memory

cell. The model can also have simple cells among the memory cells described

above. Equation (2.24) describes (in vector format) the computations done by a

LSTM network of only memory cells, where i stands for the input gates, f for the

forget gate, o for the output gate, c for the value of the linear unit at the center of

the cell and u for the input and h for the output of the cells. We use superscripts

to identify the di↵erent weight matrices connecting the di↵erent kinds of units.

Similar equations are given in Graves (2013).
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Figure 2.6: Long Short-Term Memory Network’s memory cell. Circles stand for units, while
triangles depict a multiplication between the incoming connections. At the center of the cell we
have a single linear unit with a self connection of value 1 (though its value is multiplied by the
forget gate). The input and output of the cell are guarded by the input and output gate. The
dashed and dashed-dotted arrows indicate how the recurrent connection is solved, by showing
which connections rely on the previous value of the linear unit. Namely, we first evaluate the
input gate and forget gate using the value of the linear unit at the previous time. We use the same
previous value of the unit to compute the new one, relying on the forget gate. The dashed-dotted
and dotted arrows indicate a fixed weight of 1. After the new activation of the linear unit is
computed, the output gate and the output of the cell is evaluated. The square indicates that a
sigmoid activation is applied before multiplying the value of the linear cell with the output gate.
All the gates have a sigmoidal activation and can take values between 0 and 1. See equation
(2.24) for the computations carried out by LSTMs.

Cell input u[t]

Input Gate i[t]

Output Gate o[t] Forget Gate f[t]

Cell’s output h[t]

Linear unit c[t]

i[t] = sigmoid
�
W(ui)u[t] +W(hi)h[t�1] +W(ci)c[t�1] + b(i)

�

f[t] = sigmoid
�
W(uf)u[t] +W(hf)h[t�1] +W(cf)c[t�1] + b(f)

�

c[t] = f[t]c[t�1] + i[t]�
�
W(uc)u[t] +W(hc)h[t�1] + b(c)

�

o[t] = sigmoid
�
W(uo)u[t] +W(ho)h[t�1] +W(co)c[t] + b(o)

�

h[t] = o[t]�(c[t])

(2.24)

If the input gate is mostly open, or even in other circumstances, the gradients

can explode. LSTM networks are not meant to address the exploding gradient

problem. Note also that the bias for all the gates involved are usually initialized to

some large negative value to ensure that the gates are closed most of the time.

The network proved to be quite successful on a set of artificial tasks, specifically

designed to measure long term dependencies (Hochreiter and Schmidhuber, 1997).

The basic model, as well as alterations of it, proved to also be successful giving

34



state of the art results on tasks, including music modeling (Eck and Schmidhuber,

2002), speech (Graves et al., 2013), online handwritten recognition (Graves et al.,

2009).

2.3.6 Reservoir Computing

Reservoir Computing (RC) is a paradigm for training recurrent networks. The

seminal work of Jaeger (2001) introduced this concept for machine learning, Maass

and Bishop (2001) introduced the idea in computational neuroscience, Dominey

et al. (1995) for cognitive science and Steil (2004) for cognition and robotics.

The approach is intended to take advantage of the rich dynamics of randomly

initialized recurrent neural networks to construct a random temporal projection of

the input in some high dimensional space. From this random projections a linear

map is computed that regresses the random values to the desired targets.

This model has shown to be able to succeed on many tasks, from wireless

communication (Jaeger and Haas, 2004), to financial data prediction (Ilies et al.,

2007) and speech recognition (Verstraeten et al., 2006). For a survey of the field

see Lukoševičius and Jaeger (2009).

Note that in order to preserve stability of the random projection, the random

weights need to satisfy the echo state property (ESP) which implies that any impulse

fed to the model has to die out in due time. In Buehner and Young (2006) a

su�cient condition is provided for a model to have the echo state property. The

recurrent weight matrix needs to be diagonally Schur stable. In practice, however,

most people control the magnitude of the spectral radius (absolute value of the

largest eigenvalue) of the recurrent weight. This is usually set to be less than

unity, even though this is neither a su�cient nor necessary condition. A su�cient

strategy would be to set the spectral radius to one for the matrix obtained by

taking the absolute value entry-wise to the recurrent weight matrix (Buehner and

Young, 2006).

This property also entails that the model always exhibits fading memory, and

can not deal with long term dependencies. In Lukosevicius et al. (2007), leaky-

integrating neurons are introduced as a method of coping with longer term depen-

dencies. A leaky-integration neuron is defined in the following equation:
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h[t+1] = (1� ⌘)�(W(rec)h[t] +W(in)u[t+1] + b(rec)) + ⌘h[t] (2.25)

By controlling the leak rate ⌘ 2 [0, 1], the neuron activation changes at a slower

or faster time scale. The formulation above is equivalent to applying a low-pass

filter on each neuron, where the leak-rate ⌘ controls the cuto↵ frequency of the

filter. This concept can be extended to other filters as well (band-pass, high-pass)

as shown in Holzmann and Hauser (2009).

2.3.7 Research on recurrent networks

While recurrent models have a long history, they have been understudied be-

cause of the di�culties associated with training them. Recent successes of deep

learning, and some important results recently reported on LSTM networks (Graves

et al., 2013, 2009), classical RNNs (Pascanu, Mikolov, and Bengio (2013); Pascanu,

Gulcehre, Cho, and Bengio (2014) and Sutskever et al. (2013)), RNNs trained with

Hessian-Free Optimization (Martens and Sutskever, 2011; Sutskever et al., 2011)

or ESN networks (Jaeger and Haas, 2004; Jaeger, 2013) seem to have raised the

interest in these models again.

Unfortunately, there is no de facto best approach to train RNNs or even a de

facto RNN structure. A head-to-head comparison between many of the approaches

enumerated in this introduction (see Section 2.3.3) is lacking. Recent work seems

to be biased however towards relying on BPTT to compute the gradients and

to rely on either SGD with some minor modifications or a modified Hessian-Free

Optimization algorithm. In terms of the structure, in practice it is also not clear

what are the advantages and disadvantages of LSTM networks compared to RNNs

or ESN models 1. It is also highly possible that these advantages or disadvantages

will be task dependent, based on the kind of temporal correlations the data shows,

or the amount of memory required to address the task.

In our work we will focus on standard RNNs trained with SGD where the

1. It is well understood that an ESN constructs a random temporal projection from which it
composes the desired target. This approach behaves well when the projection is done in a higher
dimensional space, so as to avoid collisions between di↵erent input patterns. If the complexity
of the input increases this approach is bound to do worse. However, it is unclear to what extent
this limits the model. For example, a divide et impera strategy can be used to break the complex
task into simpler ones that can be well addressed by multiple ESNs.
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gradients are given by the BPTT algorithm. We believe that many of our findings

extend to the other structures and learning algorithms.

2.4 Optimization

As we discussed previously in Section 2.1, Equation (2.2), learning neural net-

works can be formulated as an optimization task, where we need to find the op-

timum function f ⇤ from a family of functions F . The optimization perspective

to learning can be at times misleading. This is mostly caused by the over-fitting

e↵ect. Simply stated, we usually end up minimizing a surrogate cost, the empirical

risk on some training dataset. As such, we do not care for getting the best model

that minimizes this cost; we care about the model that minimizes the expected

loss. Note that for neural networks, this cost usually is non-convex and a proper

mathematical analysis of the convergence properties of this optimization technique

is unpractical.

Usually this discrepancy can be resolved by using techniques such as regular-

ization, which we mentioned in Section 2.1.1. However, while learning involves also

dealing with the over-fitting e↵ect, at the core of it, minimizing the empirical risk

is usually done via some optimization technique.

In the subsequent subsections we will focus on some optimization techniques

usually employed for learning. Specifically we will look at a few gradient based

optimization techniques.

2.4.1 Gradient Descent and Stochastic Gradient Descent

Gradient Descent (GD) relies on the first order derivatives of the di↵erentiable

loss function L (which typically is non-convex and measures some distance between

the output of the model and the desired targets) with respect to the parameters of

the model ✓. The algorithm is iterative. At each step t, if ✓[t] is the current value

of the parameters, we consider a first order Taylor expansion of the loss function L
around ✓[t]. We can see that taking a step in the opposite direction of the gradient

leads to decreasing the value of this Taylor expansion. If the step is small enough,
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such that the approximation of L is reliable, then the step will result in minimizing

the actual function L as well in practice.

Note that gradients are given by the Jacobian J =
h

@L
@✓1

, @L
@✓2

, . . . , @L
@✓

n

✓

i
, which is

a row vector. We will also use the notation rL for this quantity. In general, we

will represent gradients as row vectors. The algorithm for implementing gradient

descent is given below. The step size is controlled by the learning rate � 2 R+

which is a small value multiplied with each gradient.

Algorithm 2 Gradient Descent Algorithm
1: Initialize the model by ✓[0].
2: while Stopping condition is not met do
3: �✓  0
4: for all x 2 D do

5: �✓  �✓ �
⇣
rL

⇣
x, f✓[t]

⌘⌘T

6: end for
7: ✓[t+1]  ✓[t] + ��✓
8: end while

Gradient Descent can prove to be quite ine�cient in practice, especially when

one has a large dataset D. A better alternative is to approximate the step �✓

taken by GD using a single data example, or just a few of them, leading to bet-

ter convergence speed (LeCun et al., 1998). One obtains, in this way, Stochastic

Gradient Descent (SGD) or mini-batch Stochastic Gradient Descent (MSGD). A

mini-batch in this context refers to a subset of examples from the training set that

are used to obtain the gradient (i.e. the training set is divided in a large number

of mini-batches and at each step one of these mini-batches are used to obtain the

gradient). We will also use the term epoch to refer to the number of updates needed

to go once over all the examples in the training dataset (in the case of MSGD, this

equals to the number of training examples divided by the mini-batch size).

These approaches exploit the redundancies in the data and rely on estimates

of the gradient that will point roughly in the right direction. This is su�cient to

make progress towards a (local) minimum. It has been argued, additionally, that

the noise introduced by this stochasticity might also be useful for escaping narrow

minima besides simply speeding up learning.

MSGD is an improvement over SGD in the sense that it reduces the variance

in the estimation of the gradients by using several examples at a most 0 cost on
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modern computers that can take advantage of SIMD instruction and parallelize

these computations. Reduced variance allows for larger steps (larger learning rate

�) and, arguably, faster convergence. The algorithm is also easily parallelizable

along di↵erent examples which makes it optimal for modern computer architectures.

SGD and MSGD have seen several alteration meant to speed up convergence.

One of the more popular approaches being the addition of momentum (Nocedal

and Wright, 2006) which uses a running average of the gradients. Other approaches

mostly focus on adapting the learning rate (sometimes considering a di↵erent learn-

ing rate for each parameter). Some of these approaches include AdaGrad (Duchi

et al., 2011), the adaptive learning rate technique from Schaul and LeCun (2013),

etc.

2.4.2 Using curvature

Another technique to improve convergence is to rely on a better approximation

of the function L. Specifically one can use a second order Taylor expansion rather

than a first order one.

If one does this, one gets the widely known Newton’s Method (Nocedal and

Wright, 2006). The algorithm is described by the equation below, where �✓ is

given by the step required to minimize this second order Taylor approximation of

the function L.

�✓  argmin
�✓

L(✓) +rL�✓ +�✓TH�✓ (2.26)

We denote the second order derivative, or Hessian matrix, @2L
@✓2 by H to improve

readability. The solution of Equation (2.26), provided below, is obtained by forcing

the first derivative with respect to �✓ of L(✓) +rL�✓ +�✓TH�✓ to be 0.

�✓ = �H�1rLT (2.27)

One important issue with second order methods is that the size of the Hessian

grows with ⇥(n2
✓) (quadratic in n✓). For neural networks, this quickly becomes

large enough that it is problematic to store the matrix in memory, let alone to

invert it.

To address this problem, one has to rely on approximating this quantity rather
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than computing it exactly. One popular approach is to approximate the Hessian

by a diagonal matrix which reduces the memory consumption from ⇥(n2
✓) to ⇥(n✓)

(Bishop, 2006). The inversion of this diagonal matrix is also trivial. However by

employing this approximation we lose all information about how di↵erent directions

interact with each other.

Alternatively one can use a truncated Newton approach to invert the matrix,

as described, for example, in Nocedal and Wright (2006) (which provide a good

introduction to these optimization techniques), a book that provides a good intro-

duction to the field of numerical optimization. In this approach, the desired step

is obtained by solving the linear equation Hx = �rLT for the variable x. Yet

another approach is to use a Broyden-Fletcher-Goldfarb-Shanno (BFGS) approx-

imation of the inverse described in the same book (Nocedal and Wright, 2006).

The underlying assumption is that the Hessian changes smoothly (if at all) when

going from one step to the other, and therefore the inverse of the Hessian is ap-

proximated using also computations carried out at the previous time steps. Some

of these approaches will be explained in more depth in Section 4.1.

As for the first order method, the second order approximation of the function

L is only true locally, around ✓[t]. To address this issue, one can multiply the step

�✓ by some step size, or learning rate �. Typically the value of � in this case is

given by a line search.

Another approach to enforce the step size to be reasonable is via a trust region

(Nocedal and Wright, 2006). That is we convert Equation (2.26) into a constrained

optimization where we ask the norm of �✓ to be smaller than some maximal value.

Solving the constraint regularization one gets the following formula for �✓:

�✓ = � (H+ ↵I)�1rLT (2.28)

The matrix I is the identity matrix, and ↵ is usually referred to as the damping

coe�cient and controls the radius of the trust region.

2.4.3 Using the structure of the parameter manifold

Yet another family of gradient based optimization techniques are those that

take into account the structure of the underlying parameter manifold.

This line of research can be traced back to Amari’s work on information geom-
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etry (Amari, 1985) and its application to various neural networks (Amari et al.,

1992; Amari, 1997), though a more in-depth introduction can be found in Amari

(1998); Park et al. (2000); Arnold et al. (2011). The algorithm has also been suc-

cessfully applied in the reinforcement-learning community (Kakade, 2001; Peters

and Schaal, 2008) and for stochastic search (Sun et al., 2009).

We know that each parameter value ✓ identifies a specific member f✓ of our

family of parametric models F . However the Euclidean distance between two pa-

rameters ✓1 and ✓2 is not necessarily reflected in the “distance” between the func-

tions they realize, f✓1 and f✓2 . Leaving aside the issue of how one defines a distance

between functions, it is intuitively easy to see that while ✓1 and ✓2 are very di↵er-

ent (large Euclidean distance) the function they induce could have almost identical

behaviour, or the other way around, small changes in the parameter can result in

widely di↵erent behaviours in the model. For example, an extreme case would be

when some component of the parameter vectors ✓1 and ✓2 is not connected to the

output. In this instance we can artificially increase the distance between ✓1 and ✓2

as much as we want, with the two settings realizing the exact same function.

It is therefore fruitful to move in the functional manifold induced by the mapping

from ✓ to f✓ rather than the parameter space and natural gradient descent attempts

to do exactly this. To formalize this mathematically, we rely on the Riemannian

structure of the underlying manifold. That is, the space is smooth and equipped

with an inner product on the tangential space at each point p of the manifold.

We can therefore understand the geometry of the space locally to some point p by

looking at the tangential space and specifically at the metric of the tangential space

that defines the inner product (and distances) between vectors in this tangential

space.

We can move on the manifold by relying on the tangential space at each point to

define the local geometry of the manifold and indicate the right descent direction.

If we take small steps, we can assume that the tangential space approximates well

the manifold locally, therefore the direction we picked makes sense. Under these

assumptions, moving along the manifold is equivalent to correcting the Euclidean

gradient by multiplying it with the inverse of the Riemannian metric at position

✓[t] in order to account for the geometry of the tangential space.

In order to do so, we need to first define this Riemannian structure for which it

is su�cient to define the distance measure between the functions in F . In Amari
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(1998) this is done by relying on the probabilistic interpretation of our model

(specifically the model can be seen as modeling the conditional distribution p(t|u)).
We know that locally the Kullback-Leibler divergence (given in th equation below)

between two probability density functions behaves as a distance measure. This is

true because the second order Taylor expansion of the KL, when comparing p✓ and

p✓+�✓, has all its terms zero except the second order one. The second order term

(which gives the metric) has the form �✓TF�✓, where F is symmetric, making the

whole approximation of the KL symmetric. Since the second order approximation

is reliably close to ✓, then it corresponds to the KL divergence.

DKL(P ||Q) =

Z inf

� inf

ln

✓
p(x)

q(x)

◆
p(x)dx (2.29)

Equation (2.29) describes the KL divergence between two probabilities density

functions p and q. It measures the amount of information lost when one of the

probabilities is used to approximate the other. The KL divergence as a distance

measure is meaningful as it describes how similar two probability density functions

are. From our perspective, in addition to this it also useful because it looks at

the behaviour of the probability density function rather than its parametrization

(di↵erent re-parametrizations result in the same value). Therefore it is a distance

between the functions, and not their parameters. We identify the distance between

two functions f✓1 and f✓2 by the KL-divergence between their corresponding prob-

abilistic interpretations p✓1 and p✓2 . Note that the tangential space approximates

the manifold only locally, so the fact that the KL is not globally a distance measure

is of no importance.

The second order term of the Taylor expansion of the KL-divergence results in

the well known Fisher Information Matrix (FIM), defined below.

F = EE
t⇠p

✓

(t|u)

"✓
@ log p✓
@✓

◆T @ log p✓
@✓

#
(2.30)

Putting everything together we get the following step, which is very similar to

equation (2.27) for the Newton method, except that the Hessian is now replaced

by the FIM matrix:

�✓ = �F�1rLT (2.31)
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The same issues pointed out in the previous section about the Hessian matrix

apply here as well. The metric F can quickly become very large (it also scales with

n2
✓) and inverting it would be prohibitive. However, the same techniques as those

used for Hessian can be used for the FIM as well.
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3 The importance of depth
for neural networks

The first question we will attempt to address is: Why do we want to use deep

networks? This is an important question, as shallow models can have very useful

properties, as for example defining a convex problem. Such properties can be used

to theoretical analyse the behaviour of this model and provide guaranties regarding

convergence time and so on. Deep models, on the other hand, are non-convex and

hard to analyse. As a consequence most approaches come with no guarantee.

One can easily allow oneself to be convinced of the utility of deep networks

by examining the wealth of existing empirical evidence. Deep learning approaches

obtained state of the art on various tasks, like image classification (Krizhevsky

et al., 2012; Zeiler and Fergus, 2013; Goodfellow et al., 2014), speech (Dahl et al.,

2010; Hinton et al., 2012; Graves et al., 2013), language modelling (Pascanu et al.,

2014; Mikolov et al., 2011), etc.

There are also intuitive arguments for depth. In Bengio (2009), for example,

it is argued that depth allows the construction of a hierarchy of features, where

the features on the higher layers are more complex, being constructed from the

ones on the layers below. This is a divide et impera strategy, which can e�ciently

compute exponentially in terms of depth, or more complex features. In fact, this

strategy is employed successfully in many core computer science algorithms, from

sorting (e.g. merge sort) to computing the discrete Fourier transform, dynamic

programming approaches, etc. From this perspective, the usefulness of depth relies

on the fact that deep models can be exponentially more e�cient at representing

certain families of highly structured functions compared to shallow models.

Evidence of such behaviour in deep networks has been provided in Zeiler and

Fergus (2013); Lee et al. (2009), where the internal behaviour of units in higher

layers of a deep convolutional network 1 was empirically explored. These works

show units in higher layers responding to more complex patterns than units in the

1. Models from who the hidden layer i was obtain by convolving the output of the previous
layer with several kernels that are learnt; the kernels are part of the parameters of the model
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lower layers. The brain is also believed to have a deep structure (Serre et al., 2007),

with at least 5 and up to 10 layers for the visual system alone.

Additionally, this exponential e�ciency has been analysed theoretically on par-

ticular families of deep models. For example, H̊astad (1986) explores networks of

logical gates, H̊astad and Goldmann (1991); Hajnal et al. (1993) looks at networks

of threshold units, and, in Bengio and Delalleau (2011), certain families of poly-

nomials are represented more e�ciently by deep sum and product networks (Poon

and Domingos, 2011). The representational power of generative models based on

Boltzmann machines has also been researched (Montúfar et al., 2011; Martens et al.,

2013), deep belief networks are analyzed in Sutskever and Hinton (2008); Le Roux

and Bengio (2010); Montúfar and Ay (2011), and, in Montúfar and Morton (2012),

mixture of experts models are compared to products of experts.

Our work falls into the last category of arguments, namely it is a theoretical

treatment of this fundamental question. In this chapter we will analyze deep models

that rely on a piecewise linear activation function such as the rectifier function.

Compared to other works, the models analyzed here have been successfully used

in practice to obtain state of art results on hard tasks. Furthermore, the rectifier

activation function is becoming the de facto activation of choice for deep models.

We also provide an intuitive geometrical understanding of deep neural networks

that can be used to further investigate how the model behaves.

We describe one basic mechanism employed by deep models (regardless of the

activation function) to gain this exponential e�ciency. It consists in identifying

di↵erent regions of the input space. We call two regions, A and B, identified by

some function f (e.g. the output of some hidden unit) if the function f has the same

response on both A and B. This mechanism (that will be properly introduced later

on) can also reveal some insight into the structure of the family of functions that

can indeed be represented e�ciently by deep models. Namely identifying regions

is only useful if the functions we want to model are highly symmetric, or, in other

words, if they are invariant to certain transformations. If that is the case we can

rely on these invariances or symmetries to identify regions on which we expect to

have the same or very similar behaviour.

The organization of the subsequent sections is as follows. In Section 3.1 we

describe the specific problem that we want to analyze. In Section 3.2 we explore

shallow models, while Section 3.3 introduces the main contribution of this chapter.
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Finally, Section 3.6 provides some specific conclusions on this topic.

The content of this chapter overlaps with two publications (Pascanu, Montufar,

and Bengio, 2014; Montufar, Pascanu, Cho, and Bengio, 2014). In writing this

chapter I borrowed proofs, figures and paragraphs from these works. Please see

Section 1.1 for a detailed description of my personal contribution to each of the

two papers.

3.1 Preliminaries

The rectifier activation function (Glorot et al., 2011a; Nair and Hinton, 2010),

defined below, has become a popular choice for neural networks.

rect(x) = max{0, x} = x · Ix>0(x) =

(
x , i↵ x > 0

0 , otherwise
, (3.1)

where x 2 R and I is the indicator function:

Ix>b(x) =

(
1 , i↵ x > b

0 , otherwise
. (3.2)

The reason for its success is believed to be related to the optimization issues

surrounding neural networks. Compared to sigmoid or tanh activation function, for

which the gradient can become exponentially small as the norm of the input to the

function increases, for rectifier units the norm of the gradient is 1 regardless on the

norm of the input (as long as it is positive). This makes the gradients through the

rectifier networks better behaved, leading to good solutions even for deep models

that have not been pretrained 1.

One can view each hidden unit in a single layer MLP with rectifiers as divid-

ing the input space into two, where the boundary between the two regions is a

hyperplane. On one side of the hyperplane we have the unit being active, which

means that it has a positive value, while on the other side of the hyperplane the

1. Pretraining is a technique originally used to improve the solution found for a deep neural
network, where the network is trained into stages. In the first stage the network is trained to
reconstruct its input (or model the input distribution), while in the second stage the network is
trained to predict the desired target.
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Figure 3.1: Illustration of how the input space (in this case the plane) is divided by the first
hidden layer (of only three hidden units) of a feedforward network with rectifier units. The figure
is best seen in colour.

unit is inactive or dead, which is equivalent tp it being equal to 0. If we consider

all the hidden units of the hidden layer, then they define a partition of the space

into regions by using several hyperplanes as shown in Figure 3.1. Each hyperplane

corresponds to one of the hidden units.

By using a linear output layer on top of this hidden layer, we are learning, for

each input region, a di↵erent linear map. This means that if we divide the space

into su�ciently many small such linear regions, then we can reliably learn any

continuous and di↵erentiable function f .

Deep models with rectifiers, being concatenations of piecewise linear functions,

are themselves piecewise linear functions. Therefore, in a similar fashion, they

will also divide the input space into many linear regions. We will argue that

a deep model can split the space into exponentially more regions than its shallow

counterpart with the same number of units/parameters. However, due to the shared

parameters between the di↵erent linear pieces of the deep model, the mappings

learnt for each input region will not be independent of each other.

We regard this dependency between the di↵erent mappings as an advantage of

deep models rather than a shortcoming. If deep models, beside producing expo-

nentially more linear regions, would also be able to learn independent linear maps
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for each of these regions, then they would severely over-fit any task.

This constraint between the linear maps behaves like a regularizer. It is a

constraint on the kind of functions deep models can represent, and hence it puts

a prior on how the model behaves on unseen data, a prior that leads to better

generalization error. We will return to this observation later on, when we will try

to characterize the family of functions these deep models can represent. But, as

long as the true solution of some task belongs to this restricted family of functions,

deep models will be better suited at solving this specific task (at least in theory).

The number of linear regions behaves as a proxy for the flexibility of the trained

model, shallow or deep. The more linear regions we have, the better we can approx-

imate some specific set of functions. For example, to perfectly approximate some

quadratic function, one would need infinitely many such linear regions. Assuming

the relationship between the regions can be captured in the shared parameters of

the deep model, the deep model would be much more e�cient at representing this

quadratic if, for the same number of units, it partitions the space into exponentially

more regions.

We start by reformulating our intuition that deep models can be (exponentially)

more e�cient, by saying that deep models are piecewise linear functions that can

have (exponentially) more linear pieces than shallow models when the number of

hidden units (or parameters) is kept constant. Figure 3.2 exemplifies this idea. We

compare two models (a single layer MLP vs a two layer one) with the same total

number of hidden units. The models are learning to separate two classes. The

boundary between these classes is given by a sinusoidal shape. One can see that

the deep model uses more segments to construct this boundary and does obtain

fewer errors.

Although in the above example we used the same number of hidden units to

control for the complexity of the deep versus shallow model, a more popular choice

is to use the number of parameters. Our reason for relying on the number of

hidden units is that it directly corresponds, for the shallow model, to the number

of hyperplanes that it can use to partition the space. However, for fairness, we will

show that our results hold also when one controls for the number of parameters

rather than the number of hidden units.

Finally, for simplicity, we assume that the output layer is linear. This is not

a restriction per se. As long as the output activation function �(out) is not itself
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(a) (b)

Figure 3.2: Illustration of the learnt boundary by a single layer MLP with 20 rectifier hidden
units (solid line), versus a deep (2 layer) model with 10 rectifier units on each layer (dashed line).
In (a) we show the whole dataset, (b) provides a zoom into a segment of the boundary. Note how
the deep model relies on more linear segments to construct the boundary, specifically see (b), and
hence performs better. Filled markers indicate errors made by the shallow model.

parametrized and there exists some continuous function �(out)�1
such that

�(out) � �(out)�1
(y) = y

for all y 2 T, our proof holds with simple adaptations. Our argument is simple.

One can project the targets through �(out)�1
and compare a linear-output shallow

model versus a linear-output deep model, both trained to predict these transformed

targets. This comparison will give an indirect measure of how the �(out) shallow

model compares to its deep counterpart.

Furthermore, the number of linear output units also does not a↵ect the maximal

number of regions into which some model can split the space. This follows from the

linearity of the output layer. In order to prove this statement, let us first introduce

some notation (taken from Pascanu, Montufar, and Bengio (2014)).

Definition 3. Given a vector of natural numbers n = (U, n1, . . . , nL), we denote

by Fn the set of all functions RU ! Rn
L that can be computed by a rectifier

feedforward network with U inputs and nl rectifier units in layer l for l 2 [L].

The output layer of this feedforward network is linear. The elements of Fn are

continuous piecewise linear functions.

We denote by R(n) the maximum of the number of regions of linearity or

response regions over all functions from Fn. For clarity, given a function f : RU !
Rn

L , a connected open subset R ✓ RU is called a region of linearity or linear region

or response region of f if the restriction f |R is a linear function and for any open

set R̃ ) R the restriction f |R̃ is not a linear function. In the next sections we will
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compute bounds on R(n) for di↵erent choices of n. We are especially interested

in the comparison of shallow networks with one single very wide hidden layer and

deep networks with many narrow hidden layers.

The next lemma states that a piecewise linear function f = (fi)i2[k] has as many

regions of linearity as there are distinct intersections of regions of linearity of the

coordinates fi.

Lemma 1. Consider a width k layer of rectifier units. Let Ri = {Ri
1, . . . , R

i
N

i

} be

the regions of linearity of the function fi : RU ! R computed by the i-th unit, for

all i 2 [k]. Then the regions of linearity of the function f = (fi)i2[k] : RU ! Rk

computed by the rectifier layer are the elements of the set {Rj1,...,j
k

= R1
j1 \ · · · \

Rk
j
k

}(j1,...,j
k

)2[N1]⇥···⇥[N
k

].

Proof. A function f = (f1, . . . , fk) : Rn ! Rk is linear i↵ all its coordinates

f1, . . . , fk are.

In regard to the number of regions of linearity of the functions represented

by rectifier networks, the number of output dimensions, i.e., the number of linear

output units, is irrelevant. This is the statement of the next lemma.

Lemma 2. The number of (linear) output units of a rectifier feedforward network

does not a↵ect the maximal number of regions of linearity that it can realize.

Proof. Let f : RU ! Rk be the map of inputs to activations in the last hidden

layer of a deep feedforward rectifier model. Let h = g � f be the map of inputs to

activations of the output units, given by composition of f with the linear output

layer, h(x) = W(out)f(x)+b(out). If the row span of W(out) is not orthogonal to any

di↵erence of gradients of neighbouring regions of linearity of f , then g captures all

discontinuities of rf . In this case both functions f and h have the same number

of regions of linearity.

If the number of regions of f is finite, then the number of di↵erences of gradients

is finite and there is a vector outside the union of their orthogonal spaces. Hence

a matrix with a single row (a single output unit) su�ces to capture all transitions

between di↵erent regions of linearity of f .
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3.2 Single hidden layer feedforward model

To justify our claims we have to start by first analysing the shallow models. As

it turns out, the property we are trying to measure, the number of linear regions in

the input space, is a well defined quantity in computational geometry. Specifically,

this quantity is given by Zaslavsky’s theorem (Zaslavsky, 1975, Theorem A).

Let us further formalize the question and its specific answer. As we outlined in

the previous section, a single layer model divides the input space using hyperplanes.

Each hyperplane corresponds to a hidden unit and divides the space into the region

where this given unit is active, versus the region where it is inactive or dead.

In geometry, a set of n hyperplanes in a U -dimensional Euclidean space is called

an U -dimensional hyperplane arrangement A, and the hidden units of a single layer

MLP define exactly this geometrical object.

Such an arrangement is said to be in general position if its topology is stable

under random small perturbations. For the two dimensional case, this means that

any pair of lines in the arrangement intersect at a distinct point. When adding

noise to the slope of these lines, any pair will still intersect at some distinct point.

If three lines intersect at a single point, however, under noise, it will be very unlikely

for them to still do so.

Generalized to higher dimensional input spaces, the property can be stated as

saying that the intersection of any number p of hyperplanes from the arrangement

is either a (U�p) sub-dimensional space, if p  U , or, otherwise, it is the empty set.

We are interested in hyperplanes arrangements that are in general position as they

split the space in the maximal number of regions. This follows from Zaslavsky’s

general theorem. Using this notation, the problem we want to solve is:

Problem 1. Into maximally how many regions is the space RU split by n hyper-

planes?

For arrangements in general position, Zaslavsky’s theorem can be stated in the

following way Stanley (see 2004, Proposition 2.4).

Proposition 1. Let A be an arrangement of m hyperplanes in general position in

RU . Then

r(A) =
UX

s=0

✓
m

s

◆
,
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Figure 3.3: Induction step of the hyperplane sweep method for counting the regions of line
arrangements in the plane.

where r(A) is the number of regions it constructs.

In particular, the number of regions of a 2-dimensional arrangement Am of m

lines in general position is equal to

r(Am) =

✓
m

2

◆
+m+ 1. (3.3)

For the purpose of illustration, we sketch a proof of Equation (3.3) using the

sweep hyperplane method 1. We proceed by induction over the number of lines m.

Base case m = 0. It is obvious that in this case there is a single region,

corresponding to the entire plane. Therefore, r(A0) = 1.

Induction step. Assume that for m lines the number of regions is r(Am) =
�
m
2

�
+ m + 1, and add a new line Lm+1 to the arrangement. Since we assumed

the lines are in general position, Lm+1 intersects each of the existing lines Lk at a

di↵erent point. Figure 3.3 depicts the situation for m = 2.

The m intersection points split the line Lm+1 into m + 1 segments. Each of

these segments splits a region of Am in two pieces. Therefore, by adding the line

Lm+1 we get m+ 1 new regions. In Figure 3.3 the two intersection points result in

1. This proof is a well known result in computational geometry and does not belong to me.
See, for example, Stanley (2004).

52



three segments that split each of the regions R1, R01, R0 in two. Hence

r(Am+1) = r(Am) +m+ 1 =
m(m� 1)

2
+m+ 1 +m+ 1 =

m(m+ 1)

2
+ (m+ 1) + 1

=

✓
m+ 1

2

◆
+ (m+ 1) + 1.

For the number of response regions of MLPs with one single hidden layer we

obtain the following.

Proposition 2. The regions of linearity of a function in the model F(U,n1,O) with

U inputs and n1 hidden units are given by the regions of an arrangement A of n1

hyperplanes in U-dimensional space. The maximal number of regions of such an

arrangement is r(A) = R(U, n1, O) =
PU

j=0

�
n1

j

�
.

Proof. This is a consequence of Lemma 1 and the maximal number of regions is

produced by an U -dimensional arrangement of n1 hyperplanes in general position,

which is given in Proposition 1.

3.3 Deep networks

We can now turn our attention to deep rectifier MLPs. If we look at some layer

of this deep MLP, say the second (hidden) layer, it is easy to see that, while each

hidden unit still has two possible modes, active or inactive, in the input space the

boundary between these modes is not a hyperplane anymore.

Let us consider a simple two-dimensional example. Assume we have three hid-

den units on the first layer, h(1)
1 , h(1)

2 and h(1)
3 . We will examine the behaviour of

a unit h(2)
1 on the second layer, that receives input from three units h(1)

1 , h(1)
2 and

h(1)
3 . The pre-activation value of h(2)

1 is given below:
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ĥ(2)
1 =w1h

(1)
1 + w2h

(2)
2 + w3h

(3) + b (3.4)

h(1)
1 =rect(u1x+ u2y + c)

h(1)
2 =rect(v1x+ v2y + d)

h(1)
3 =rect(t1x+ t2y + e)

where w1, w2, w3, u1, u2, v1, v2, t1, t2, b, c, d, e 2 R are the parameters of the model

and ĥ(2)
1 indicates the value of the hidden unit h(2)

1 before applying the activation

function of the unit. As for the single layer model, in order to define the boundary

that divides the region of the input where this unit is active from the region where

it is inactive, we need to solve the equation ĥ(2)
1 = 0. We can do this by explicitly

solving the equation on each branch of h(1)
1 , h(1)

2 and h(1)
3 :

h
(1)
2 = 0

h
(1)
3 = 0

h
(1)
1 = 0

h
(2)
1 = 0

Figure 3.4: The piecewise linear boundary defined by a hidden unit on the second layer of a
rectifier MLP with only 3 hidden units on the first layer. This picture is best seen in color.

54



ĥ(2)
1 =

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

b , i↵ all units are inactive

w1u1x+ w1u2y + (b+ cw1) , i↵ h(1)
2 and h(1)

3 are inactive

w2v1x+ w2v2y + (b+ dw2) , i↵ h(1)
1 and h(1)

3 are inactive

w3t1x+ w3t2y + (b+ ew3) , i↵ h(1)
1 and h(1)

2 are inactive

(w1u1 + w2v1)x+ (w1u2 + w2v2)y

+(b+ cw1 + dw2) , i↵ h(1)
3 is inactive

(w1u1 + w3t1)x+ (w1u2 + w3t2)y

+(b+ cw1 + ew3) , i↵ h(1)
2 is inactive

(w2v1 + w3t1)x+ (w2v2 + w3t2)y

+(b+ dw2 + ew3) , i↵ h(1)
1 is inactive

(w1u1 + w2v1 + w3t1)x

+(w1u2 + w2v2 + w3t2)y

+(b+ cw1 + dw2 + ew3) , i↵ all units are active
(3.5)

This is now a piecewise linear function. Figure 3.4 depicts a instantiation of

ĥ(2)
1 = 0, while in Figure 3.5 we can see the regions formed by two units on a higher

layer in a similar setup.

Figure 3.5: Depiction of two piecewise linear functions that intersect in two di↵erent points,
splitting the space into more than 4 regions (which is what you would get from an arrangement
of two lines).

From the sweep hyperplane method, employed for computing the number of
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linear regions of a hyperplane arrangement, we can see that the number of distinct

intersection points between the boundaries of the di↵erent hidden units is related

with the final number of linear regions. In fact it is not hard to imagine that it

would be possible to generalize this method to piecewise linear boundaries, and,

even in this case, the more distinct intersection points we have the more regions

we will end up with.

This observation is advantageous for deep models, as two distinct piecewise

linear functions can intersect in more that a single point, therefore resulting in

more intersection points. Figure 3.5 illustrates this behaviour and, fundamentally,

this is the reason why we can construct (exponentially) more regions using deep

models compared to shallow ones.

3.3.1 Understanding units in higher layers

The idea of assigning meaning to hidden units in a deep model is, in many

instances, very useful. It can help understanding how the model functions, how it

can be debugged, when and why it will underperform, and how it can be extended.

However doing so is di�cult.

Before proceeding to compare a deep model with a shallow model, in this section

we will look at how this geometrical perspective on piecewise linear models can

potentially be used to understand the behaviour of units in higher layers.

For a shallow model, we can usually look at the pre-activation value of each

hidden unit as some sort of score. Since this value is given by a linear map, the

score itself is just the cosine between the input vector x and the corresponding

weight row-vector of incoming connections Wi: (the i-th row of the matrix W).

This makes the interpretation of the unit easy. The weight vectors of the dif-

ferent units Wi: can be seen as templates, and each hidden unit on the first layer

fires according to how well these templates are represented by the input example

x. In the specific case of images, we usually refer to the vectors Wi: as filters.

They live in the same space as the original input image x and therefore they can

be visualized, providing some intuition to what kind of patterns each unit responds

to. Usually, one expects or hopes these filters to look like Gabor filters (which is

the typical response of neurons in the V1 region of the brain).

If we use a piecewise linear activation function for a deep model, as argued
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before, we get that any hidden unit (regardless of the layer) is also a piecewise

linear function. This comes from the simple fact that a composition of piecewise

linear functions is itself piecewise linear.

This observation can be key to provide, for units on higher layers, a similar

interpretation as the one given to the units of the first layer. Any piecewise linear

function is fully defined by the di↵erent linear pieces from which it is composed.

Each piece is given by its domain, a region of the input space Ri ✓ RU , and the

linear map fi that describes its behaviour on Ri. Because fi is an a�ne map, it

can be interpreted in the same way hidden units in a shallow model are. Namely,

we can write fi as:

ĥ = fi(x) = uTx+ c, x 2 Ri,

with uT a row vector, uT 2 RU . ĥ is the pre-activation value of some hidden unit

of the single layer neural model. Then fi computes the cosine between x and uT .

If x can be interpreted as some image (say in case of a vision task), uT can also be

interpreted an image and shows the pattern (template) to which the unit responds

whenever x 2 Ri.

If (R
(h

(k)
j

)

1 , f
(h

(k)
j

)

1 ), . . . , (R
(h

(k)
j

)
p , f

(h
(k)
j

)
p ) describe the behaviour of some hidden

unit h(k)
j on layer k, then, by the statement above, if we can obtain the di↵erent

linear function f
(h

(k)
j

)

i , i.e., we can fully interpret h(k)
j .

Given some input example x from some arbitrary region of the input space,

x 2 R
(h

(k)
j

)

i , then we can construct the corresponding linear map f
(h

(k)
j

)

i . Specifically

the weight uT is described in the equation below, and a similar computation can

be done for the bias.

uT = W(k)
j: diag (I

h

(k�1)>0 (x))W
(k�1) · · · diag (I

h

(1)>0 (x))W
(1). (3.6)

Equation (3.6) computes the linear map by keeping track of which linear piece

is used for all piecewise linear functions (hidden units on the layers below) that

compose the function describing the unit we are inspecting. The formula itself is

specific to a deep rectifier MLP, though it can easily be adapted for other piecewise

linear models, including convolutional networks with rectifiers or maxout activa-

tion.

In order to properly describe some hidden unit h(k)
j , in principle, we would need

to identify and visualize (or inspect) each of the linear segments. To do so, one has
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to traverse the whole input space and identify the linear function at each point. The

set formed by these linear functions represents all the linear pieces of the function.

This is not feasible. Instead we propose to use a set of points, as for instance the

validation set, and identify all the linear responses that a hidden unit exhibits on

this set of points. The hope is that what we will have is a su�ciently rich set of

behaviours that should provide a better understanding of the hidden unit.

Figures 3.6, 3.7 and 3.8 show such a visualization applied to a rectifier MLP

with 3 hidden layers. The first two hidden layers have 1000 hidden units, while

the last one has only 100. The model was trained on the Toronto Faces Dataset

(TFD) (Susskind et al., 2010). We randomly picked 20 units for the second and

third layer and visualized the most interesting 4 units out of the subset (based

on the maximal Euclidean distance between the di↵erent linear responses of each

unit). To pick linear responses of the unit, we considered a K-means clustering of

the linear responses obtained by going over the training examples. We clustered

these responses in 4 classes and picked a representative of each class For the first

hidden layer each unit has a single response (linear piece), and we just visualize 16

di↵erent units. For the output layer, we visualize all 7 output units.

We trained the model using stochastic gradient descent. We used, as regular-

ization, an L2 penalty 1 with a coe�cient of 10�3, dropout on the first two hidden

layers 2 (with a drop probability of 0.5) and we enforced the weights to have unit

norm column-wise by projecting the weights after each SGD step. We used a

learning rate of 0.1 and an output layer composed of sigmoid units (instead of a

softmax layer which would be a more popular choice for classification). The pur-

pose of these regularization schemes, and the sigmoid output layer, is to obtain

cleaner and sharper filters. The model is trained on only a subset of the training

data 3and achieves an error of 20.49% which is reasonable for this dataset and a

non-convolutional model.

By looking at the resulting filters (figures 3.6, 3.7 and 3.8) we can see that higher

order units become invariant to interesting transformations. See for example the

linear responses of the second unit visualized for the second hidden layer. For

the last visualized unit of the third layer we also provide di↵erences between the

1. The L2 penalty simply sums the square of the parameters of the model
2. The dropout regularization consist in simply dropping with some probability hidden units

from the computation (Hinton et al., 2012)
3. The original dataset is split in 5 folds. We only rely on the first fold of this dataset
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(a) 1st hidden layer filters (b) 1st hidden layer normalized filters

(c) 2nd hidden layer filters (each column
represents 4 di↵erent linear responses of

a given hidden unit)

(d) 2nd hidden layer normalized (each
column represents 4 di↵erent linear
responses of a given hidden unit)

Figure 3.6: 1000-1000-100 hidden units rectifier MLP trained on TFD dataset. In (a) and (b)
we visualize filters of the first layer (columns of the first weight matrix). Each unit has a single
response, each visualized template of the first layer belongs to a di↵erent unit. In (b) each filter is
normalized (showing only the direction, the shape of the filter). Colours are only used to improve
visualization (the data contains no colour information). In (c) and (d) we visualize units on the
second hidden layer. For each unit we visualize 4 di↵erent linear responses arranged in a column.
As before, in (d) colour is only for visualization, and each filter is normalized independently.
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(a) 3rd hidden layer filters (each column
represents 4 linear responses of a given

unit)

(b) 3rd hidden layer normalized filters
(each column represents 4 linear

responses of a given unit)

(c) Di↵erences between the di↵erent
linear responses of a unit in the 3rd

hidden layer

(d) Normalized di↵erences between the
di↵erent linear responses of a unit in

the 3rd hidden layer

Figure 3.7: 1000-1000-100 hidden units rectifier MLP trained on TFD dataset. In (a) and
(b) we show 4 di↵erent linear responses for units in the third hidden layer. (b) uses colours for
better visualization, and normalizes each filter independently, showing the shape of the di↵erent
filters. In (c) and (d), for the last visualized unit, we show the di↵erences between the di↵erent
linear responses. These deltas approximate the transformation that would transform one linear
response into another. The unit is invariant to these transformations. Note that filters on the
first column and first row are the actual linear responses. Each delta is the di↵erence between a
filter corresponding to the row minus the filter corresponding to the column.
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(a) Filters for the output layer, first 4
units (each column represents di↵erent

linear responses for a given unit)

(b) Normalized filters for the output
layer, first 4 units (each column

represents di↵erent linear responses for
a given unit)

(c) Filters for the output layer, last 4
units (each column represents di↵erent

linear responses for a given unit)

(d) Normalized filters for the output
layer, last 4 units (each column

represents di↵erent linear responses for
a given unit)

Figure 3.8: 1000-1000-100 hidden units rectifier MLP trained on TFD dataset. In (a) and (b)
we show 4 di↵erent linear responses (a column) of the first 4 output units of the model. These
represent the classes anger, disgust, fear and happy. In (b) we normalized each filter independently
to only show the shape of the filter. Note the invariances that these linear pieces exhibit. In (c)
and (d) we show linear responses (4 align in a column) for the last 3 output units, representing
the classes sad, surprise, neutral. 61



di↵erent linear responses. These deltas represent a first order approximation of

the transformation that takes you from one linear response to another. We argue

that the unit learns, in some sense, to be invariant to these transformations by

responding similarly to an input and its transformed counterpart.

Zeiler and Fergus (2013) also attempt to visualize the behaviour of units in

the upper layer (in the case of a deep convolutional network with rectifiers). Our

visualization approach is, to some extent, quite similar. One di↵erence is that the

approach we introduce here does not make any further assumptions besides the

piecewise linear nature of the unit. This approach can be used for any piecewise

linear activation function and any model structure.

Another important di↵erence is in the justification of the method. Zeiler and

Fergus (2013) attempts to invert (or approximate the inversion of) the computa-

tions carried on by the model and therefore it is a top down process. We provide

a bottom up process, which avoids approximating the inverse (or reconstruction)

function of the hidden unit. Our algorithm recovers the linear function that de-

scribes locally the piecewise linear functions and we use our understanding of linear

functions to visualize this behaviour.

The resulting process is very similar in the computations that have to be car-

ried out (except the order), with some minor di↵erences. One example of such

a di↵erence is resolving rectifiers. Because Zeiler and Fergus (2013) attempts to

reconstruct (or identify the part of input) that results in a maximal activation of

a unit, it has to invert the rectifier activation (which by construction does not

have an inverse). The inverse has to be approximated, and it this case, they claim

that the rectifier itself is a good approximation. In contrast, we are attempting to

identify the linear map that describes locally the behaviour of a unit in the deep

model. Therefore we only need to identify which linear branches of the units below

are used, and compose them. In case of the rectifier, if the unit is inactive when

we evaluate the example x that defines the input region, then it means that the

corresponding column of weights is zeroed out and it does not contribute to the

linear map represented by the unit. Otherwise the unit has a linear response. In

other words, we end up using the mask provided by the forward computations,

instead of applying the rectification function on the reconstruction.
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3.3.2 A special class of deep models

In this section we want to show that deep models are in some sense more

expressive than to shallow models. As before, we use the number of response

regions as a measure of expressivity.

To answer the question of how deep models can construct, with the same number

of hidden units (or parameters) a piecewise linear function with more linear regions,

let us first look at a restricted class of deep models. In the subsequent sections we

will generalize this class to any deep model, once we have identified the mechanism

that allows one to obtain more linear regions.

We start by constructing a layer of n = 4 rectifiers f1, f2, f3 and f4 on top of the

2-dimensional Euclidean input, followed by a linear projection. We can construct

the layer in such a way that it divides the input space into four ‘square’ cones; each

of them corresponding to the inputs where two of the rectifier units are active.

We define the four rectifiers as:

f1(x) =max {0, [+1, 0]x} ,

f2(x) =max {0, [�1, 0]x} ,

f3(x) =max {0, [0,+1]x} ,

f4(x) =max {0, [0,�1]x} ,

where x = [x1, x2]
> 2 RU . By linearly projecting f = [f1, f2, f3, f4]

>, we can

e↵ectively mimic a layer with two absolute-value units g1 and g2:

"
g1(x)

g2(x)

#
=

"
1 1 0 0

0 0 1 1

#
2

66664

f1(x)

f2(x)

f3(x)

f4(x)

3

77775
=

"
abs(x1)

abs(x2)

#
. (3.7)

Each absolute-value “unit” gi divides the input space into two regions along the

i-th coordinate axis. The combination of g1 and g2, the input space is divided into
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four regions:

S1 = {(x1, x2) | x1 � 0, x2 � 0}

S2 = {(x1, x2) | x1 � 0, x2 < 0}

S3 = {(x1, x2) | x1 < 0, x2 � 0}

S4 = {(x1, x2) | x1 < 0, x2 < 0} .

Additionally, the values of gi’s are symmetric with respect to the i-th axes,

meaning that for any point x 2 Si we will always have a corresponding point y 2 Sj

with g(x) = g(y), for all i and j. This behaviour is illustrated in Figure 3.9.

PS1PS3

PS4 PS2

-4

-2

4

2

x0

x1

Figure 3.9: Depiction of the points in PS
1

2 S1, PS
2

2 S2, PS
3

2 S3, PS
4

2 S4 that get mapped
to the same values by the functions g1 + g2.

It is possible to apply the same strategy to partition the output S 0 of the

hidden layer given by g1, g2. This will result in a connectivity structure as the one

in Figure 3.10. Note that this network has 3 hidden layers, with the second layer

being the linear project that gives g1 and g2. Because this second layer is linear, it

can be folded into the weight matrix going from layer 2 to layer 3, meaning that

there exists a two layer rectifier model that has exactly the same behaviour. This

is summarized in the following lemma:

Lemma 3. A layer of n rectifier units with U inputs can compute any function

that can be computed by the composition of a linear layer with U inputs and U 0

outputs and a rectifier layer with U 0 inputs and n1 outputs, for any U,U 0, n1 2 N.

Proof. A rectifier layer computes functions of the form x 7! rect(Wx + b), with

W 2 Rn1⇥U and b 2 Rn1 . The argument Wx + b is an a�ne function of x. The
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f3
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f 01
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Figure 3.10: Depiction of a 2 layer rectifier MLP that has a intermediary linear layer whose
activations correspond to g1 and g2. Because the intermediary layer is linear, it can be folded
into the weight and bias from layer 1 to layer 2.

claim follows from the fact that any composition of a�ne functions is an a�ne

function.

Applying the absolute value function to coordinates in S 0 is not very useful on its

own, as these coordinates are positive by construction being the result of applying

the absolute value function to (x1, x2). However we can use a large negative bias

on each dimension to get negative values. If we construct 4 rectifier units, f 0
1, f

0
2, f

0
3

and f 0
4, in an analogous way as before, such that we get g01 and g02, where, for x 2 S 0,

g01 = abs(x1 � b)

g02 = abs(x2 � b),

we again partition S 0 into four square regions. One of the regions will have a finite

area. This is because in the re-centered S 0 (after we have subtracted the bias b),

we only have negative numbers from [�b, 0).
This partition of S 0 will be copied to each Si in the original input space. Fig-

ure 3.11 (a) illustrates this behaviour by showing di↵erent points of the input (in

the di↵erent input regions of the partition) that get mapped to the same value by
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this two layer deep construction. Figure 3.11 (b) generalize this to regions, showing

that a segment drawn in the space defined by the top layer results into 16 di↵erent

segments in the original input space, one in each region of the partition.

x0

x1
P

(a)

S1
S2S3

S4

S 0
4 S 0

1

S 0
1S 0

1

S 0
1 S 0

4

S 0
4S 0

4

S 0
2

S 0
2S 0

2

S 0
2 S

0
3 S 0

3

S 0
3 S 0

3

S 0
1S 0

4

S 0
2S 0

3

Input Space

First Layer Space

Second Layer
Space

(b)

Figure 3.11: (a) Illustration of points in the di↵erent input regions of the input that get mapped
to the same value by this two layer deep model. (b) Illustration of a recursive subdivision of the
input space into four squares. Shading is used to indicate the di↵erent regions of the input. The
plot shows how a segment drawn in the space defined by the top layer corresponds to 16 di↵erent
segments, one in each input partition.

(a) (b) (c)

Figure 3.12: (a) Illustration of the partition computed by 8 rectifier units on the outputs (x1, x2)
of the preceding layer. The color is a heat map (the values of the functions are map to colors
from blue to red, with blue being lower) of x1 � x2. (b) Heat map of a function computed by a
rectifier network with 2 inputs, 2 hidden layers of width 4, and one linear output unit. The black
lines delimit the regions of linearity of the function. (c) Heat map of a function computed by a 4
layer model with a total of 24 hidden units. It takes at least 137 hidden units on a shallow model
to represent the same function.

Note the exponential growth (with the number of layers) of the number of

repetitions in the input space of any partition done on the last layer. For example

look at the partition done on the second layer in Figure 3.11. We divided S 0 into

4 regions. If we trace these partition back to the input space, we see that the
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partition gets replicated in all of the four square cones S1,S2,S3 and S4. This

results in 16 regions in the input space.

Generally, on the last layer, we may place rectifiers in any way suitable for the

task of interest (e.g., classification). The partition computed by the last layer will

be copied to each of the input space regions that produced the same input for the

last layer. Figure 3.12 shows a function that can be implemented e�ciently by a

deep model using this mechanism.

Roughly speaking for each layer up to the last one we get to multiply the total

number of regions by 4. On the last layer we can do an arrangement in general

position, which results in

4k�1

✓
1 + 4 +

✓
4

2

◆◆

regions of a deep model constructed as detailed above. This means that even for a

small number of layers k, we can have many more linear regions in a deep model

than in a shallow one. For example, a shallow model with 8 units will have at

most 37 linear regions. The equivalent deep model with two layers of 4 units can

produce 44 linear regions. For 12 hidden units the shallow model computes at most

79 regions, while the equivalent three layer model can compute 176 regions.

3.3.3 Folding the space

The mechanism used by the special class of deep models introduced above relies

on the concept of identified regions by g. We will use freely the word identify to

express this concept, as in, e.g., g identifies two regions.

Definition 4. A map g between continuous spaces identifies two input neighbor-

hoods S and T if g(S) = g(T ). In this case we also say that S and T are identified

by g.

Optionally we will refer to a set of neighborhoods or regions as being identified

by some function g with the following meaning:

Definition 5. A map g identifies a set of neighbourhoods {S1, S2, . . . , Sk} if for

any two neighbourhoods Si and Sj are identified by g.

Within this definition, for instance, in the special class of deep models intro-

duced previously, the four quadrants of 2–D Euclidean space are identified by the
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Figure 3.13: Identification of regions across the layers of a deep model. Colors are used to
indicate regions that are identified with each other. This is just a illustration.

coordinate-wise absolute value function g : R2 ! R2;

g(x1, x2) =

"
|x1|
|x2|

#
. (3.8)

By identifying pieces of the input space of a neural network, each subsequent

layer computation can be focused on a single output region, e↵ectively acting on

many inputs that have been identified by the previous layer. One can define the

subsequent layers of the network in such a way that any of their computations con-

centrate on that single output region, thus replicating that complex computation

on all identified inputs and generating an overall complicated-looking function.

To reiterate this idea, let us consider again the special class of deep models

introduced in the previous section. The second layer in this model employs a large

negative bias, and, by mimicking the coordinate-wise absolute value, it divides the

input of the layer into four regions. The input of the second layer in this case is

given by the first quadrant of the plane (as the first layer applies the absolute value

to each coordinate). Therefore, this split into four regions gets repeated into each

of the four quadrants. One can see this by, for example, looking for all the input
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points that result in one of the boundaries learnt on the last layer. This behaviour

is depicted in Figure 3.11. In Figure 3.13 we show a more generic illustration of

this mechanism for a generic network.

Each hidden layer j computes a function gj on the image of the preceding layer.

We denote the image of the jth layer by Sj ✓ Rn
j . Given a subset R ✓ Sj, we

denote by P j
R the set of subsets R̄1, . . . , R̄k ✓ Sj�1 that are mapped injectively by

gj onto R; that is, the subsets that satisfy gj(R̄1) = · · · = gj(R̄k) = R.

The number of separate input-space regions that are mapped to a common

region R ✓ Sj ✓ Rn
j of the output-space of the jth layer can be given recursively

as

N j
R =

X

R02P j

R

N j�1
R0 , N 0

R = 1, for each region R ✓ RU . (3.9)

For example, P 1
R is the set of all input-space regions that are identified by the first

layer such that their image by g1(W1 ·+b1) contains the region R ✓ S1 ✓ Rn1 .

Let ⌘j be the function that computes the activations of the hidden layer j

starting from the input. Namely ⌘j = gj � gj�1 � . . . � g1. N j
R 2 N is the number of

regions in the input space that are identifiable with respect to the function ⌘j such

that the image of these identifiable regions through ⌘j contains the region R.

This e↵ectively builds a tree rooted at the region in the output and counts re-

cursively the number of leaf nodes (see Figure 3.13). In other words, Equation (3.9)

counts the number of times that each separate region in the output space is copied

in the input space.

Based on the recursion from Equation (3.9), one can estimate the number of

input space regions as follows.

Lemma 4. The maximal number of regions of linearity of the functions computed

by a neural network with U input variables and L hidden layers of ni rectifiers for

i 2 [L] is at least

N =
X

R2R̄L

N L
R ,

where N L
R is defined by Equation (3.9) and the maximal cardinality of R̄L is given

by
PU

j=0

�
n
L

j

�
.

Proof. The equation for the maximal cardinality of R̄L is a consequence of Za-
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1. Fold along the 2. Fold along the
horizontal axisvertical axis

3.

Figure 3.14: Space folding of 2–D Euclidean space along the two axes.

slavsky’s theorem, as discussed previously in Section 3.2. Each output region R

is replicated within all the identifiable regions of the input whose image through

⌘L contains R. This value is given by N L
R (see the definition in Equation (3.9)).

Therefore a lower bound on the maximal number of regions is given by summing

up how many times each output region is replicated in the input space, which is

just N =
P

R2R̄L

N L
R .

3.3.4 Identification of Inputs as Space Foldings

Before providing a specific construction for a deep model where one can easily

compute the value ofN L
R in Theorem 4, let us discuss further the concept of identify.

One can understand the mechanism outlined above in terms of space folding.

A map g that identifies two subsets S and S 0 of a space can be considered

(loosely) as a folding operator that folds the space such that the subsets S and

S 0 coincide. For instance, the coordinate-wise absolute function g : R2 ! R2 in

Equation (3.8) folds the input space once along each coordinate axis. In this case,

this folding is equivalent to saying that the four quadrants of the 2–D Euclidean

space are identified by the map g. See Figure 3.14 for an illustration. The same

map can be used again to fold the resulting image of the original input space.

One can easily see that each space folding corresponds to a single hidden layer

of a deep neural network. Each hidden layer can folds the space defined by the

layer immediately below with respect to a specific map. A deep neural network

e↵ectively folds its input recursively, starting from the first layer.
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Figure 3.15: Space folding of 2–D space in a non-trivial way. Note how the folding can poten-
tially identify symmetries in the boundary that it needs to learn.

The consequence of a recursive folding is that any partitioning of the final folded

space will apply to all the collapsed subsets (identified by the map corresponding

to the multiple levels of folding). E↵ectively, this means that any partitioning of

the output space of a deep neural network is replicated over all the subsets of the

input space which are identified by a map defined by a stack of hidden layers. See

Figure 3.13 for an illustration of this replication property.

The space folding is not restricted to be done along the axes of the space, nor

to preserve lengths. Rather, how the space is folded depends on the structure and

nonlinear function used at each hidden layer. A set of complicated folding schemes

may be applied to a space, which also means that the precise shapes of the identified

subsets may di↵er from each other. See Figure 3.15 for one more illustration.

3.3.5 Symmetries in RU

One important question left is when is it useful to fold the space?. As we pointed

out earlier, while deep models can have more response regions than shallow models,

the linear maps for these regions are not independent from each other. They share

a lot of the parameters of the model. So in reality, the choice is between few

independent linear maps and many linear maps that share parameters and are

constrained by each other.

The folding space metaphor provides us the intuition of how these linear maps

generated by a deep model are constrained. Namely they are the result from

regions of the input being identified by the model. If say two regions R1 and R2

are identified by the model, then it means that the linear maps g1 and g2 that

describe the behaviour over these regions have to be such that g1(R1) is the same

(or a subset) of g2(R2).
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This property is not useful for example if we try to model white noise. In

principle, white noise is such that there are no regions of the input that one could

identify such that the resulting noise on these regions is the same. Deep models

would not be able to better model white noise compared to shallow models, because

they will not be able to identify any regions of the space and fold them on top of

each other.

For deep models to be able to take advantage of this folding mechanism, the

function that we want to model has to be highly symmetric on its input space. Or

in other words the function has to be invariant to certain changes of the input.

If the function shows this property, then the deep model can identify the input

regions for which the function is symmetric and fold them on top of each other.

Most functions we want to learn using machine learning approaches do exhibit such

properties. This means deep models can learn them more e�ciently than shallow

model, while at the same time avoiding over-fitting by relying on the prior that the

learnt function has to be symmetric.

To make the observation above less abstract, we can illustrate it as follows.

Assume we want to learn a gender classifier based on images of faces. And let us

further assume that the images we try to classify exhibit two types of emotions,

they are either sad or happy. We want our trained model to be invariant to the

emotion. We want to get the right gender regardless of whether the face is sad

or happy. To do so, in principle a shallow model will have to learn separately the

boundary between happy female face and happy male face, happy female face and

sad male face, sad female face and happy male face and finally sad female face and

sad male face. On the other hand, a deep model could identify the region of happy

faces with the region of sad faces and fold them on top of each other. This means,

in its upper layer, it will only need to learn one boundary, between female faces

and male faces.

See also Figures 3.6 and 3.7 and 3.8. These visualizations show the di↵erent

responses a unit in a higher layer can have.

Figure 3.16 shows three examples of such inputs that get mapped to the same

value by some unit on the last hidden layer. The exact inputs were obtained as

follows. We picked randomly a hidden unit on the third hidden layer. We then

selected all training examples that resulted in an activation close to 2.5 for said

hidden unit. Using the linear response of the unit for each of these examples, we
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Figure 3.16: Visualization of three di↵erent input points that get mapped to the exact same
value of 2.5 by a hidden unit on the last hidden layer. The first row shows the input examples
that were obtained by interpolating training examples along the linear response of the unit in
each instance. The second row shows the filter of the linear response of the unit in each case. See
text for more details.

slightly altered these examples (interpolated them along the direction given by the

filter) until they resulted in an activation of 2.5. The first row of Figure 3.16 shows

the new obtained input examples (that do not belong to the training set, though are

arguably undistinguishable from the training set). The second row of Figure 3.16

shows the linear response of the unit in each case.

There are two ways in which a unit in an intermediary layer can result in the

same activation for two di↵erent inputs. If the two inputs belong to the same linear

region of the unit, i.e. the unit has the same linear response for each, then this

can be achieved if the di↵erence between the two input examples is orthogonal to

the response of the unit. The second approach, which is the focus of this chapter,

regards the case when the two input examples belong to di↵erent linear regions of

the input space. Given the input of the third hidden layer, the map that results

in the activation of the hidden unit is constant. Given that the di↵erence of the

activations in the second layer for the two inputs is not orthogonal to the weights

of the hidden unit, then the first two hidden layer have to fold or identify these

two examples, resulting in the same activations in the second layer.

Alternatively, we can understand this property by looking at the response filter

of the unit in each case. Because the unit has di↵erent responses for the di↵erent
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inputs, it means that the unit is invariant to the transformations that convert one

response into another. In Figure 3.7 we visualize the deltas between the 4 linear

responses of a unit in the third hidden layer. These deltas indicate the kind of

transformations that the unit is invariant to.

3.3.6 Extending the special class of deep models

In this section we will extend the analysis previously introduced class of deep

models (see Section 3.3.2). Specifically we will show how to drop the constraint of

having only two input units and having, on each layer, two times the number of

input units.

Let us consider a single hidden layer of n rectifiers with U input variables, where

n � U . We can partition the set of rectifiers into U (non-overlapping) subsets of

cardinality p =
⌅
n
U

⇧
.

We can now look at one of the U subsets and construct p rectifiers such that

f1(x) =max
�
0,w>x

 
,

f2(x) =max
�
0, 2w>x� 1

 
,

f3(x) =max
�
0, 2w>x� 2

 
,

...

fp(x) =max
�
0, 2w>x� (p� 1)

 
,

where w = [0, · · · , 0, 1, 0, · · · , 0] is a vector that chooses a single coordinate from

the input space.

We can linearly aggregate these p rectifiers into a single scalar value:

g(x) =
h
1 �1 1 �1 1 · · ·

i
[f1(x), f2(x), f3(x), f4(x), · · · ]> . (3.10)

Since each of these p rectifiers acts only on one common input dimension

(marked with 1 in w), the constructed g e↵ectively is a function that divides the

input space (�1,1) into p segments

(�1,1) = (�1, 0] [ (0, 1] [ (1, 2] [ · · · [ (p� 1,1) .

For each segment, g computes a linear function whose image contains the interval
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x
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Figure 3.17: Folding of the real line into equal-length segments by a sum of rectifiers.

(0, 1), as shown in Figure 3.17.

By considering all U subsets of rectifiers in a given layer, we obtain an identi-

fication of pU hypercubes. The output of the hidden layer g = [g1, g2, · · · , gp]> is

symmetric about the hyperplane between any two hypercubes. Further computa-

tions by deeper layers on the image of the input space computed by g will apply

to each of these pU hypercubes.

3.3.7 Formal Result

We can generalize the procedure described above to the case where there are U

input variables and L hidden layers of widths ni � U for all i 2 [L]. In this case,

the maximal number of regions is bounded below by the following theorem.

Theorem 1. The maximal number of regions of linearity of the functions computed

by a neural network with U input units and L hidden layers, with ni � U rectifiers

at the i-th layer, is bounded below by

 
L�1Y

i=1

jni

U

kU
!

UX

j=0

✓
nL

j

◆
.

Proof. The proof is done by counting the number of regions for a suitable choice

of network parameters.
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We organize the units such that at each layer j the set of units is partitioned into

U subsets (or groups) of cardinality
⌅n

j

U

⇧
. Each subset responds to a coordinate

of an non-singular a�ne transformation of U -dimensional space. Specifically, as

done in Section 3.3.2, based on Lemma 3, we insert an intermediary linear layer

of U units between any two rectifier hidden layers. The weights and biases to

each of the U subset of rectifier units of a given layer are arranged similar to the

functions f1, . . . fp of Section 3.3.6. The linear map constructs the function g for

each of group by summing with alternating sign the responses of the corresponding

rectifier units. This folds each coordinate into itself p times, once at each inflexion

point of the di↵erent units in the group. This partitions the space into a grid of

identified regions.

Specifically, for the weights used in Section 3.3.6, the function g computes a

partial sum of the responses (fk)k�1. It is su�cient to show that each of these

partial sums, on the domain that they are defined, also takes values in the interval

(0, 1). By inspecting the values of fk, we see that the intervals we need to explore

are (0, 1], (1, 2], · · · , (p� 1,1).

For some x 2 (0,1) we denote g(x) = Sl(y), where l = min(p, bxc) and y =

x� l. The form of g(x) becomes:

g(x) = x+
lX

i=1

�
2(x� i)(�1)i

�
= Sl(y) = l+y+2

lX

i=1

�
y(�1)i

�
+2

lX

i=1

�
(l � i)(�1)i

�

We solve this by induction, distinguishing between the case when l is odd or even.

We first hypothesize that Sl(y) = y if l is even, and Sl(x) = 1� y if l is odd.

The base cases are trivially true by the formula of the partial sum.

In the first induction step we consider l odd, implying l�1 is even. By induction

we have

Sl(y) =(l � 1) + 1 + y + 2
l�1X

i=1

(l � 1� i+ y + 1)(�1)i � 2y

=Sl�1(y) +
l�1X

i=1

2(�1)i + 1� 2y = y + 1� 2y = 1� y
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For the second induction step we assume l is even, implying l � 1 is odd, and

Sl(y) =(l � 1) + 1 + y + 2
l�1X

i=1

(l � 1� i+ y + 1)(�1)i � 2y

=Sl�1(y) +
l�1X

i=1

2(�1)i + 1� 2y = 1� y � 2 + 1 + 2y = y

Stability with respect to perturbation

Our lower bounds on the complexity attainable by deep models are based on

suitable choices of the network weights. This does not mean that the bounds only

hold in singular cases.

The parametrization of the functions computed by a given network is continu-

ous, that is, the map  : RN ! C(RU ;Rn
L); ✓ = {W,b} 7! f✓ is continuous.

We considered the number of regions of linearity of the functions f✓. By defi-

nition, each region of linearity contains an open neighborhood of the domain RU .

Given a function f✓, there is an ✏ > 0 such that for each ✏-perturbation of the pa-

rameter ✓, the resulting function f✓+✏ has at least as many regions as f✓, assuming

there is only a finite number of regions.

The regions of linearity of f✓ are preserved under small perturbations of the

parameters, because they have a finite volume. It may happen, however, that the

perturbed function has additional regions of linearity, emerging at the intersection

of regions from the unperturbed function.

If we define a probability density on the space of parameters (say uniform on a

bounded domain), what is the probability of the event that the function represented

by the network has a given number of regions of linearity? By the above discussion,

the probability of getting a number of regions at least as large as the number

resulting from any particular choice of parameters (for a uniform measure within a

bounded domain) is nonzero, even though it may be very small.
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3.4 Asymptotic behaviour

Here we derive asymptotic expressions of the formulas contained in Proposi-

tion 2 and Theorem 1. We use the following standard notation:

– f(n) = O(g(n)) means that there is a positive constant c2 such that f(n) 
c2g(n) for all n larger than some N .

– f(n) = ⇥(g(n)) means that there are two positive constants c1 and c2 such

that c1g(n)  f(n)  c2g(n) for all n larger than some N .

– f(n) = ⌦(g(n)) means that there is a positive constant c1 such that f(n) �
c1g(n) for all n larger than some N .

The notation holds under the assumption that the functions take only positive

values.

Proposition 3.

– Consider a single layer rectifier MLP with kn units and U inputs. Then the

maximal number of regions of linearity of the functions represented by this

network is

R(U, kn, 1) =
UX

s=0

✓
kn

s

◆
,

and

R(U, kn, 1) = O(kUnU), when U = O(1) (is constant).

– Consider a k layer rectified MLP with hidden layers of width n and U inputs.

Then the maximal number of regions of linearity of the functions represented

by this network satisfies

R(U, n, . . . , n, 1) �
 

k�1Y

i=1

j n
U

kU
!

UX

s=0

✓
n

s

◆
,

and

R(U, n, . . . , n, 1) = ⌦

✓j n
U

kU(k�1)

nU

◆
, when U = O(1).

Proof. Here only the asymptotic expressions remain to be shown. It is known that

UX

s=0

✓
m

s

◆
= ⇥

 ✓
1� 2U

m

◆�1✓m
U

◆!
, when U  m

2
�
p
m. (3.11)
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Furthermore, it is known that

✓
m

s

◆
=

ms

s!

�
1 +O( 1

m)
�
, when s = O(1). (3.12)

When U is constant, U = O(1), we have that

✓
kn

U

◆
=

kU

U !
nU
�
1 +O

�
1
kn

��
.

In this case, it follows that

UX

s=0

✓
kn

s

◆
= ⇥

 ✓
1� 2U

kn

◆�1✓kn
U

◆!
= ⇥

�
kUnU

�
and also

UX

s=0

✓
n

s

◆
= ⇥(nU).

Furthermore,

 
k�1Y

i=1

j n
U

kU
!

UX

s=0

✓
n

s

◆
= ⇥

✓j n
U

kU(k�1)

nU

◆
.

When k and U are fixed, then bn/UcU(k�1) grows polynomially in n, and kU

is constant. On the other hand, when n is fixed with n > 2U , then bn/UcU(k�1)

grows exponentially in k, and kU grows polynomially in k.

We now analyze the number of response regions as a function of the number of

parameters.

Proposition 4. The number of parameters of a deep model with U = O(1) inputs,

O = O(1) outputs, and k hidden layers of width n is

(k � 1)n2 + (k + U +O)n+O = O(kn2).

The number of parameters of a shallow model with U = O(1) inputs, O = O(1)

outputs, and kn hidden units is

(U +O)kn+ n+O = O(kn).

Proof. For the deep model, each layer, except the first and last, has a weight matrix

with n2 entries and a bias vector of length n. This gives a total of (k�1)n2+(k�1)n
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parameters. The first layer has nU weights and n bias. The output layer has nO

weight entries and O bias entries. If we sum these together we get

(k � 1)n2 + n(k + U +O) +O = O(kn2).

For the shallow model, the hidden layer has knU weight entries and kn bias.

The output weight matrix has knO entries and O bias entries. Summing these

together we get

kn(U +O) + n+O = O(kn).

The number of linear regions per parameter can be given as follows.

Proposition 5. Consider a fixed number of inputs U and a fixed number of out-

puts O. The maximal ratio of the number of response regions to the number of

parameters of a deep model with k layers of width n is

⌦

✓j n
U

kU(k�1) nU�2

k

◆
.

In the case of a shallow model with kn hidden units, the ratio is

O
�
kU�1nU�1

�
.

Proof. This follows by combining Proposition 3 and Proposition 4.

We see that even fixing the number of parameters, deep models can still compute

functions with many more regions of linearity that those computable by shallow

models. This comes from the fact that per parameter bounds for the deep model

still grow faster than the shallow model ones. Specifically we have the same be-

haviour, the ratio grows exponentially with the number of layers k for deep models,

versus polynomially for shallow.
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3.5 Other piecewise linear models

The results in the previous sections can be extended to other piecewise linear

activation functions as well. See, for example, Montufar, Pascanu, Cho, and Bengio

(2014), where we provide a treatment for the maxout unit. We will only briefly

discuss here convolutional models. These are models that, at each layer, convolve

the input from below with a bunch of learnt kernels, operation that is followed by

pooling. That is, the result of the convolution (after some activation function is

applied to it) is divided into square regions, and then only the max value over that

region is provided as output of the layer.

Convolutional models implement a form of folding of the input space that is

enforced by their structure. When the model pools over some region of activations,

it enforces the output unit that represents the result of the pooling operation to

have the same response for several inputs. Specifically, any input that has the

same maximal response at one position in the pooling region, but a di↵erent weaker

response somewhere else will result in the exact same activation. This corresponds

to a particular folding of the space which promotes robustness to local translations.

By relying on the same intuitions as before, we can see that having multiple

convolutional layers versus one, we can gain more linear regions. Each layer iden-

tifies more regions between them, folding them on top of each other, while the last

layer divides all the folded regions in some specific way. For the specific structure of

convolutional networks this translates, for example, into having units in the higher

layer be more translation invariant compared to those on the lower layers.

On top of this specific folding of the space (given by the pooling operator in

conjunction with the convolution that evaluates the same filter at di↵erent posi-

tions), a typical convolutional model also applies rectifiers on the pooled responses.

This provides a second level of folding, which compared to the first one, is learnt.

One can freeze the pooling units by only considering inputs that result in a certain

unit from each pooling region to be selected. Once the e↵ects of pooling and con-

volutions are removed from the analysis by this choice, we can analyse the e↵ect of

the rectifier activation function in the same way we did for the deep MLP case.
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3.6 Conclusion and Outlook

In this section we tried to understand why it is useful to use a deep model versus

a shallow one. In particular we restricted ourselves to piecewise linear models in

order to allow for a rigorous mathematical analysis. For this class of models we

rephrased the question by looking at how deep vs shallow piecewise linear models

partition the space.

Our main result shows that the piecewise linear function represented by a deep

model can have exponentially more linear pieces compared to a shallow model with

the same number of parameters. Deep models are able to do so by having interme-

diary units that identify di↵erent regions of the input. Because these intermediary

units have the same response on di↵erent input regions, the upper part of the model

will become invariant to the choice of the input region (which should translate to

some specific type of invariance in the input).

We can think of identifying di↵erent regions of the input by some intermediary

unit as the process of folding the space such that those region fall on top of each

other. The process of “folding” or “identifying” regions of input can be formally

expressed.

One key observation is that while deep models partition the input in more

regions, these regions are not independent of each other. The dependency between

the responses is given by the shared weights. It is tightly connected with why deep

models are able to generalize, as it imposes a prior on how the model behaves on

unseen examples. Our work shows that the function of interest has to be symmetric

(invariant) to some changes in the input to be more e�ciently modeled by a deep

model. This comes from the folding strategy that the network uses to gain this

e�ciency. The model identifies these symmetries or invariances, and folds the space

according to them so that it exhibits the same behaviour regardless.

For example let us consider a hypothetical gender classification task based on

images of faces. We would like to fold on top of each other the input regions that

represent faces that are happy, sad, angry, etc. This way we only need to learn one

boundary between a female face and a male one, within this folded space. A shallow

model, instead, has to learn di↵erent boundaries for all the specific subclasses of

faces.

We believe that our proposed geometrical perspective of piecewise linear models
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can be also useful for other types of analysis. We showed, for example, that this

intuition can be used to provide a proper visualization (and understanding) of

the behaviour of units in higher layers. Another interesting direction is to look

at learning within this framework. Asking question of the kind: what kind of

foldings can stochastic gradient descent learn? How does the discontinuity between

switching linear pieces a↵ect learning? Also regularization terms such as dropout

can be viewed from this perspective. 1. We believe our work is just a glimpse of

what this perspective can be used for.

Finally we add that some of our analysis might be possible to be transfered to

non-piecewise linear models. For example, it is easy to argue that a sigmoid or tanh

model can also, in principle, identify regions of the input space and, by the same

arguments used within this section, become more e�cient at representing certain

families of functions.

1. The idea of studying dropout in this perspective belongs to Justin Bayer.
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4 Learning and non-convex
optimization

While the previous chapter looked exclusively at how e�cient a neural network

is at modelling di↵erent families of functions, it completely ignored the learning

problem. That is, while certain deep models can be exponentially more e�cient

than shallow ones at modelling certain types of functions, it is not obvious that we

can actually find these optimal models in our family of functions F .

The process of finding these functions relies on minimizing the empirical risk. In

the case of neural networks, we know this function to be non-convex, and therefore

the standard gradient descent methods we use do not guarantee to find the global

minimum. Even worse, the algorithm might not even find a minimum at all, and,

for example, it can get stuck in the plateau around some saddle point.

In this chapter we turn our attention to optimization. While we can not pro-

vide a solution (and there might not even be one) for all these issues surrounding

optimization of neural network models, we do hope to provide new insight into the

problem through our work.

Parts of this chapter were taken from Pascanu and Bengio (2014) and Pas-

canu, Dauphin, Ganguli, and Bengio (2014). Figures, mathematical derivations

and even paragraphs are borrowed from this published works. The first paper fo-

cuses on natural gradient descent and the relationship of this algorithm to other

recent algorithms from the literature. The second paper introduces the saddle point

problem. Please see Section 1.1 for details about my personal contribution to both

these works.

We start the chapter with a more in depth introduction of existing work and

specific concepts for optimization.
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4.1 Literature review

Optimization methods attempt to solve equations of the form given below. In

this work we will focus on functions L that are continuous and twice di↵erentiable 1.

✓⇤  argmin
✓2Rn

✓

L(✓) (4.1)

Depending on the nature of the function L one can usually divide the class of

problems into the cases convex or non-convex.

While convex problems are well understood and studied, the same can not be

said about the non-convex case. Therefore often practitioners rely on algorithms

developed under the convexity assumption even for non-convex tasks and hope that

the algorithm will still behave well. This approach is not hopeless and it should

lead to a local minima, as any surface can be locally approximated by a convex one

(e.g., the second order Taylor approximation of the function or a first order Taylor

approximation). However there are many ways in which the non-convexity of the

surface might a↵ect the optimization algorithm.

As a note, due to the non-convex nature of the task, it is well accepted in the

community that convergence to a local minima is acceptable. Also convergence

analysis is not usually possible, so the algorithms are, in general, compared em-

pirically. One looks at convergence time for some specific benchmark dataset (for

some specific model). While this is a very imprecise measure, it does provide some

way of ranking the di↵erent possible algorithms.

We first start by introducing some optimization approaches proposed in the

literature.

4.1.1 Second Order methods

As stated before, one important approach for improving convergence speed is to

rely, at each step of our iterative algorithm, on a second order Taylor approximation

of the function we want to minimize. This approach allows one to move further

as the second order approximation is more reliable than the first-order one. Fig-

ure 4.1 (a) depicts this algorithm on a generic non-convex surface. In Figure 4.1 (b)

1. In practice a widely used activation function is the rectifier which is continuous everywhere
except at 0 (or other similar piece-wise linear activations). In such situations we simply ignore
the discontinuity (at assume the gradient at 0 is 0), even though mathematically it is not correct.
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we show a typical situation in which considering second order information helps,

high curvature valleys. The second order information rescales each direction of

the gradient independently, moving much faster in direction of low curvature and

slower in those of high curvature.

The underlying assumption is that the function is locally convex, namely that

the Hessian is positive definite. If this is not true one usually restricts the approx-

imation to a small neighbourhood, which in the limit will be flat, and hence can

be seen as a convex surface. Later on, in Section 4.4, we will discuss the problem

of locally non-convex surfaces in more detail.

����
������

(a) 1D depiction of the algorithm (b) 2D
high-curvature valley

Figure 4.1: Depiction of a second order method. In (a) we show a Newton step. The red dashed
line indicates the second order Taylor approximation of the function around ✓[k], and the dotted
blue line the first order approximation. The dotted red line crossing the second order Taylor
approximation shows the minimum of this approximation, and the arrow indicates the step we
would take according to the Newton Method. In (b) we show a typical pattern that second
order methods should address well, high curvature valleys. With blue solid arrows we show the
behaviour of a first order method, while with green dashed arrow we show the step a second order
method would take.

For neural networks, one of the main impediments against second order methods

is the cost of computing the Newton step. In general, storing and computing the

Hessian can already be prohibitive, and this with out even considering that we need

to invert this matrix. In the following subsection we describe one technique to deal

with these issues (but other approaches do exist).
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Truncated Newton methods

One approach of computing the Newton step �✓ = �H�1rLT is to reformulate

it as a subproblem whose solution is the wanted quantity (Nocedal and Wright,

2006, Chapter 7.1). This approach is called a truncated Newton method, or an

inexact Newton method. That is at each step of the optimization process we solve

the following linear system:

H�✓ = �rLT (4.2)

Finding the solution of Equation (4.2) can be done with out explicitly computing

H or its inverse if we employ a linear solver such as, for example conjugate gradient

(CG) which we describe in Section 4.1.2. The only thing we need is to be able to

compute e�ciently the products Hx for arbitrarily x.

Also we do not need the exact value of �✓ but rather a good estimate of it.

Therefore, in practice, we do not need to run CG to convergence, we just need

to do su�ciently many iterations to get a good estimate of �✓. This approach,

compared to others, has the advantage that it uses the full Hessian matrix and

hence considers the interactions between any two parameters. However, to make

the approach tractable, the inversion of the matrix is approximated by truncating

the maximal number of CG steps.

Another issue that one has to account for is a singular Hessian matrix or a not

positive-definite one, which would contradict the assumptions made by CG. This is

usually approached via damping (adding the identity matrix times some constant

to the Hessian before inverting it), or, alternatively, one could use a di↵erent linear

solver, as for example MinResQLP (Choi et al., 2011), that can deal with such

ill-behaved matrices.

L and R operators

Let us first direct our attention on how to compute e�ciently products of the

form Hx. There are two main approaches of doing so. The first one relies com-

pletely on the backpropagation algorithm, while the second one employs the R op-

erator. We will introduce these strategies by first providing a bit of notation and

by introducing the two mathematical operators L and R.
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The R operator, introduced in Pearlmutter (1994) , is just the directional deriva-

tive defined below:

R {f, ✓, s} = lim
r!0

f(✓ + rs)� f(✓)

r
=
@f(✓)

@✓
s. (4.3)

The R operator can be used to apply the chain rule from right to the left, or, in

other words, to apply the chain rule by starting at the inputs and moving towards

the output of the computational graph representing the function. Pearlmutter

(1994) shows that this operation can be implemented e�ciently such that it only

scales linearly with the number of parameters (and computational steps involved).

On the other hand, the L operator can be used to apply the chain rule from left

to right (from the output moving towards the inputs). It is defined as follows:

L {f, ✓, s} = s
@f(✓)

@✓
. (4.4)

One can see that using the L operator we can re-derive the backpropagation

algorithm. Specifically, if we have a composition of functions

f = f1 � f2 � . . . � fk,

that results in a scalar function

f : Rn
✓ ! R,

We can use the L operator to compute the partial derivative of f with respect to

✓ as follows:

@f

@✓
= L {fk, ✓,L {fk�1, fk,L {. . . ,L {f1, f2, 1}}}} (4.5)

Note that the Equation (4.5) is an application of the chain rule from the left to

the right (or from the output towards the input), where we use the scalar nature

of the composition to initialize the recursive algorithm by multiplying to the left

by 1. This is indeed just the backpropagation algorithm.

Furthermore, we can see that one way of expressing Hx is by using the equation

below:
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L

(
n
✓X

i=1

L {f, ✓, 1}i xi, ✓, 1

)
=
@
Pn

✓

i=1
@f
@✓

i

xi

@✓
=

2

664

Pn
✓

i=1 xi
@2f

@✓
i

@✓1

. . .
Pn

✓

i=1 xi
@2f

@✓
i

@✓
n

✓

3

775 = Hx (4.6)

Equation (4.6) relies on multiplying the gradient element-wise with the vector x

and then taking the derivative of the element-wise sum of this product with respect

to the parameter. Because the sum and partial derivative operations are linear, and

x is not a function of ✓, the computations can be re-arranged, revealing that this is

indeed the desired quantity. Both partial derivatives that we have to compute are

partial derivatives of scalar functions, and therefore both can be computed using the

backpropagation algorithm. Because the backpropagation algorithm scales linearly

with the number of parameters so does this formulation.

Another approach relies on the R operator, and is described in the equation

below:

R {L {f, ✓, 1} , ✓,x} = lim
r!0

@f(✓+rx)
@✓ � @f(✓)

@✓

@r
= Hx (4.7)

This approach involves applying the backpropagation algorithm, which is linear

in the number of parameters, followed by applying the R operator, which is also

linear in the number of parameters. Therefore the resulting algorithm does scale

linearly in the number of parameters and is quite e�cient in practice.

Trust region method

A trust region method is an approach of extending existing methods for convex

optimization to the non-convex case. The concept of this approach is depicted in

Figure 4.2. We know that the non-convex function f can only locally be assumed to

be quadratic and convex (or the quadratic approximation of f is only true locally).

We enforce this knowledge by limiting the size of the step we take to some ball in the

parameter space whose radius indicates how far we can trust our approximation.

The radius of this ball is set heuristically and it can change during learning. The

method can be seen as the dual of a line search (in some sense). When doing a line

search we first fix a direction (by using an approximation of f) and then search for

the size of the step that induces the minimum of f along that direction. For trust
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Figure 4.2: Depiction of the trust region approach. The figure is a heat map of the error surface
(with dashed contour lines). The solid pink arrows indicate three steps taken by the algorithm.
Note that this is just a illustration and not an actual experiment. The transparent disks with
a dashed-dotted border depict the trust regions at each step. The step taken at each time is
bounded by its corresponding region. Note that the region’s radius can change from step to
step and that also the minimum of the quadratic, if it is indeed within the trust region, is not
necessarily the minimum of the function. Picture is best seen in color.

regions, we first fix the maximal step size (the radius of the ball) and then check

for the direction that provides the minimum of the second order approximation of

f within this ball. For a more in depth introduction of this family of methods we

suggest reading Nocedal and Wright (2006, Chapter 4).

Formally we can express the trust region approach by the following formula:

argmin
�✓

f(✓) +rf�✓ + 1

2
�✓TH�✓

s. t. k�✓k22 = (�✓)T�✓  r

(4.8)

We use rf to indicate the partial derivative of f with respect to ✓. The con-

stant r is a hyper-parameter that can change from one iteration to another of the

algorithm and it represents the radius of the trust region. There is usually some

freedom in choosing which norm of �✓ we use, though in Equation (4.8) we rely on

the squared Euclidean norm for convenience. Also the Hessian can be replaced by

some approximation B that can make computations more tractable, as for example

a diagonal approximation of the Hessian H.
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One easy way of understanding how to solve this problem, is to attempt to solve

it via Lagrange multipliers (or specifically, since we have an inequality constraint,

using the Kuhn-Tucker method). This will tell us that we need to solve:

argmin
�✓

f(✓) +rf�✓ + 1

2
�✓TH�✓ + ↵(�✓)T�✓, (4.9)

where ↵ is a function of r and comes from additional constraints that we have to

Equation (4.9). We can further massage this equation, noticing that we can insert

the identity matrix in between (�✓)T�✓. This leads to :

argmin
�✓

f(✓) +rf�✓ + 1

2
�✓T (H+ 2↵I)�✓ (4.10)

We notice that Equation (4.10) the standard formula for damping the Hessian

matrix. We can fold the constant 2 into ↵ which bears the name of the damping

coe�cient. Because r was a hyper-parameter that was set heuristically, one can

instead set ↵ heuristically, avoiding to solve for ↵ from our constraints which could

be di�cult. We therefore are left with the solution:

�✓ = �(H+ ↵I)�1rfT (4.11)

A useful observation is that damping can also be seen as simply adding ↵ to

each eigenvalue of the matrix H. We can show this by looking at the definition of

the eigenvalue, eigenvector pairs. Namely if �i and xi is such a pair, we know that:

Hxi = �ixi

If now we look at what happens when we use the damped matrix, we get:

(H+ ↵I)xi = Hxi + ↵Ixi = (�i + ↵)xi

This is useful as it shows how damping can help with negative curvature (which

is equivalent to a negative-definite matrix) or a singular Hessian matrix. Namely

if ↵ is large enough, it will make all 0 eigenvalues equal to ↵ and all negative

eigenvalues positive. From this formulation one can also see that when ↵! 0, we

recover the standard Newton method (as the radius of the trust region goes to1).

On the other hand, when ↵ ! 1, the step becomes infinitesimal in size (as we
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scale with roughly 1/↵), but, also, the direction of the step becomes aligned with the

direction of the gradient. That is, ↵ not only controls the magnitude of the step,

but also the orientation, smoothly interpolating between a scaled version of the first

order gradient and the Newton step. Geometrically, this happens because, as the

trust region radius becomes smaller, both the second and first order approximations

of the function become more and more reliable, to the point that both approximate

f equally well.

Finally we make a note on how to update the damping coe�cient during learn-

ing. One basic heuristic is given by looking at how well our second order approx-

imation of the function is at the step that we want to take. That is, we compute

the following value, where the denominator is the change in f predicted by our

quadratic approximation :

⇢ =
f(✓ +�✓)� f(✓)

rf�✓ + 1
2
�✓T (H+ ↵I)�✓

(4.12)

If ⇢ > ⇢max then our approximation is pretty reliable and we can reduce the

damping ↵ by multiplying it with 1/↵
scale

. This will increase the radius of our trust

region. If ⇢ < ⇢min then our approximation is not reliable and we need to in-

crease the damping by multiplying it with ↵scale. The constants ⇢max, ⇢min,↵scale

are hyper-parameters of the algorithm. This heuristic is sometimes called the

Levenberg-Marquardt heuristic as it was introduced for the Levenberg-Marquardt

algorithm (More, 1978).

4.1.2 Conjugate Gradient

Conjugate Gradient (CG) is one specific algorithm for solving the linear system:

Ax = b, (4.13)

where A is a square, positive-definite and symmetric matrix, A 2 Rn⇥n. For an

indepth introduction please see Nocedal and Wright (2006, Chapter 5) or Shewchuk

(1994). The algorithm starts from x[0] (usually set to 0) and picks, at each step,

a direction that is A-orthogonal or conjugate to the previously chosen directions.

Conjugacy is defined below:
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x is conjugate with y i↵ xTAy = 0 (4.14)

Algorithm 3 Conjugate Gradient applied for solving Ax = b
1: r[0]  b�Ax[0]

2: d[0]  r[0]
3: �  rT[0]r[0]
4: k  0
5: while rT[k]r[k] > ✏2� and k  kmax do
6: q[k]  Ad[k]

7: ↵[k]  
r

T

[k]r[k]

d

T

[k]q[k]

8: x[k+1]  x[k] + ↵[k]d[k]

9: r[k+1]  r[k] � ↵[k]q[k]

10: �[k]  
r

T

[k+1]r[k+1]

r

T

[k]r[k]

11: d[k+1]  r[k+1] + �[k]d[k]

12: k  k + 1
13: end while

Pseudocode describing CG is provided as Algorithm 3. For each conjugate

search direction d[k], the algorithm computes the step size ↵[k] needed to minimize

the objective along that direction. Also it proposes a new conjugate direction d[k+1]

by adding to the remaining residual the old conjugate direction times �. The factor

� is such that it imposes conjugacy between d[k+1] and previous search directions.

Finally, the matrix A is only used to compute products with the di↵erent search

directions explored by the algorithm. This means that you do not need to store

or compute A as long as you can provide e�cient means for computing products

between this matrix and some vector d[k].

Linear Conjugate Gradient can be extended to the nonlinear case, obtaining

in this way the Nonlinear Conjugate Gradient (NCG) algorithm. NCG however

is a heuristic method that, as any method on a non-convex task, can only find a

local minimum. CG, in contrast, is guaranteed to solve the linear system within n

steps. The idea of NCG is to explore directions that are conjugate with respect to

the Hessian of the function. When the function is actually quadratic the algorithm

behaves as CG and the same convergence speed can be attained.

Unfortunately, in the general case, when we drop the quadratic assumption,

the algorithm comes with out any guarantees. Because the Hessian is not constant
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from one step to another, we can not enforce the search directions to be conjugate

with each other anymore. The best we can do is to ask for local conjugacy, where

only two consecutive search directions are conjugate, or a few consecutive ones if

we make a smoothness assumption on the Hessian (the assumption says that H[k]

is about the same as H[k+1]). This leads to the common practice of resetting the

search direction d[k] to r[k] after a predefined number of steps (so that your search

directions do not become too biased by the form the Hessian had several steps

before, a form that is not relevant anymore).

There are three main alterations done to the CG algorithm to obtain NCG.

The first one is that the value r is now given by the derivative of the function with

respect to the parameters. Secondly, ↵ is computed using a line-search to minimize

the objective. Thirdly, computing the � term for NCG is also more complicated

because the Hessian matrix can change from one step to another. There is no unique

and universally accepted formula for �, but rather several proposals that can behave

di↵erently depending on the problem. All these proposals lead to the same solution

in the quadratic case or when used for (linear) CG and hence distinguishing between

them in these cases is not as important. Some of the popular choices for formulas to

compute � are the Fletcher-Reeves, Polak-Ribiere or Hestenes-Stiefel formulations

given below. Polak-Ribiere is the more widely used to compute a new conjugate

direction as it behaves better than the original Fletcher-Reeves formulation.

�Fletcher-Reeves =
hr[k+1], r[k+1]i
hr[k], r[k]i

(4.15)

�Polak-Ribiere =
hr[k+1], r[k+1]i � hr[k+1], r[k]i

hr[k], r[k]i
(4.16)

�Hestenes-Stiefel =
hr[k+1], r[k+1]i � hr[k+1], r[k]i
hd[k], r[k+1]i � hd[k], r[k]i

(4.17)

Here we have used angular brackets (“hi”) to indicate inner products between

vectors. Finally the convergence of CG (or NCG) can be accelerated by using

preconditioning. Preconditioning can help improve the condition number of the

matrix that needs to be inverted, making numerical computations more stable.

This is usually done via a preconditioning matrix M�1 that gets multiplied on

both sides of the linear system. The art of properly preconditioning consists in

choosing the right matrix M which is usually a task dependent one. However, there
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are standard preconditioners that improve the behaviour of CG/NCG in general.

One such example is the Jacobi preconditioner which is a diagonal matrix whose

diagonal elements correspond to the diagonal of A (or the diagonal of the Hessian

matrix in the nonlinear case).

Other improvements deal with the nature of A. For example, MinResQLP

(Choi et al., 2011) is such an improvement that relaxes the constraints on A and

allows singular or non-positive definite matrices A. When the matrix is singular,

MinResQLP will return a minimal residual solution.

4.2 Generalized trust region methods

In this section we propose the framework of generalized trust region methods.

They are a straightforward extension of trust region methods, which we propose

as a unifying framework for many of the existing optimization techniques recently

proposed for deep learning.

Let Tk{f, ✓,�✓} denote the first k terms (k  2) of the Taylor expansion of f

around ✓ evaluated at �✓. When there is no confusion, we will sometimes abridge

the notation to simply Tk{f}. The following equation spells out the meaning of

Tk{f}:

Tk{f, ✓,�✓} = f(✓) +
@f

@✓
�✓ +

1

2
�✓T

@2f

@✓2
�✓ + . . . (4.18)

We call a generalized trust region method any iterative optimization algorithm

that, at each step, solves the following subproblem to obtain the (direction of the)

step �✓:

�✓ = argmin
�✓

Tk{L, ✓,�✓} with k 2 {1, 2}

s. t. d(✓, ✓ +�✓)  r
(4.19)

Where d is some relevant distance measure. There are two fundamental changes

from the standard formulation of trust regions. The first change is that we allow

to also minimize a first order Taylor expansion of our function L, rather than only

a second order approximation. The second change is that we replaced the norm of

�✓ by some distance measure between ✓ and ✓ +�✓.
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4.3 Analysis of certain optimization techniques

for deep learning

In this section we describe (or re-derive) some proposed variants of second order

methods or natural gradient approaches for neural networks. We also describe the

relationship between these methods and, where possible, we show how they can be

understood as generalized trust region methods.

4.3.1 Natural gradient descent

Natural gradient descent can be traced back to Amari (1985) and the algorithm

was analyzed in several publications since. To name just a few, please see Amari

et al. (1992); Amari (1998); Heskes (2000); Park et al. (2000); Kakade (2001); Peters

and Schaal (2008); Le Roux et al. (2008); Sun et al. (2009); Arnold et al. (2011);

Desjardins et al. (2013). We provide here a derivation of the algorithm that is

similar to the one proposed by Heskes (2000), a derivation that we also used in

Desjardins, Pascanu, Courville, and Bengio (2013). For clarity, in our description

of the algorithm we avoid relying on concepts from Riemannian geometry, instead

we only make use of basic concepts from calculus and constrained optimization.

This derivation is complementary to the more traditional description that we have

provided in Section 2.4.3.

Natural gradient can be understood as a generalized trust region method, Equa-

tion (4.18), where we use a first order Taylor expansion of the objective and d is

given by the change in the model (in the KL sense), where the model is described

by the probability density function p. Note that most models can be interpreted

from a probabilistic perspective as some distribution, which we denote here with p.

For example, a standard neural network is usually seen as a conditional distribution

between input and target.

We are looking for �✓ that minimizes the first order Taylor expansion of L
when the second order Taylor approximation of the KL-divergence between p✓ and

p✓+�✓ has to be constant:

argmin�✓ L(z; ✓ +�✓)

s. t. KL(p✓(z)||p✓+�✓(z)) = const.
(4.20)
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Figure 4.3: An illustration of natural gradient descent as a trust region. The upper surface
(red) represents the error surface. The surface on the bottom (green) indicates the KL-divergence
between p✓ and p✓+�✓ as a function of �✓. Note how each step goes to the boundary of the trust
region.

We use an equality constraint instead of an inequality as Equation (4.18) dic-

tates. However, because we rely on the first order Taylor expansion, the two are

equivalent. The reason is that the first order equation has a minimum at either

minus or plus infinity, and hence, even with an inequality constraint we will always

jump to the border of our trust region. See Figure 4.3 for a visualization. Using

an equality is however more intuitive as it o↵ers a better understanding of what

the algorithm is trying to do: we want to minimize our loss, but at the same time

taking a step that induces a fixed change in p. That is we want to move with

constant speed on the manifold, with out being slowed down by its curvature.

This also makes learning locally robust with respect to re-parametrizations of the

model, as the functional behaviour of p does not depend on how it is parametrized.

Assuming �✓ ! 0, we can approximate the KL divergence by its second order

Taylor series:

KL(p✓ k p✓+�✓) ⇡ (EE
z

[log p✓]� EE
z

[log p✓])

� EE
z

[rlog p✓(z)]�✓ �
1

2
�✓TEE

z

⇥
r2log p✓

⇤
�✓

=
1

2
�✓TEE

z

⇥
�r2 log p✓(z)

⇤
�✓

=
1

2
�✓TF�✓ (4.21)
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The first term cancels out, and, because EE
z

[r log p✓(z)] = 0 1, we are left with

only the last term. The Fisher Information Matrix form can be obtained from the

expected value of the Hessian through algebraic manipulations as follows:

EE
z


�@

2 log p✓
@✓

�
= EE

z

"
�
@ 1

p
✓

@p
✓

@✓

@✓

#
= EE

z

"
� 1

p✓(z)

@2p✓
@✓2

+

✓
1

p✓

@p✓
@✓

◆T ✓ 1

p✓

@p✓
@✓

◆#

= � @2

@✓2

 
X

z

p✓(z)

!
+ EE

z

"✓
@ log p✓(z)

@✓

◆T ✓@ log p✓(z)
@✓

◆#

= EE
z

"✓
@ log p✓(z)

@✓

◆T ✓@ log p✓(z)
@✓

◆#
(4.22)

We now express Equation (4.20) as a Lagrangian, where the KL divergence is

approximated by Equation (4.21) and L(✓ + �✓) by its first order Taylor series

L(✓) +rL(✓)�✓:
L(✓) +rL(✓)�✓ + 1

2
��✓TF�✓ (4.23)

Solving Equation (4.23) for �✓ gives us the natural gradient decent formula:

rNL(✓) =rL(✓)EEz

h
(r log p✓(z))

T (r log p✓(z))
i�1

= rL(✓)F�1. (4.24)

We use rN for the natural gradient to distinguish it from r for gradients. Note

that we get a scalar factor of 2 1
� times the natural gradient. We fold this scalar

into the learning rate, which now also controls the weight we put on preserving the

KL-distance between p✓ and p✓+�✓. The approximations we use in equation (4.21)

are meaningful only around ✓: in Schaul (2012) it is shown that taking large steps

might harm convergence. We deal with such issues both by using damping (i.e.

setting a trust region around ✓ by adding another constraint on the norm of �✓)

and by properly selecting a learning rate.

1. Proof: EEz [r log p✓(z)] =
P

z

⇣
p✓(z)

1
p✓(z)

@p✓(z)
@✓

⌘
= @

@✓ (
P

z p✓(z)) = @1
@✓ = 0. The proof

holds for the continuous case as well, replacing sums for integrals.
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Adapting natural gradient descent for neural networks

In order to use natural gradient descent for deterministic neural networks we

rely on their probabilistic interpretation (see Section 2.1.2 of this work or Bishop

(2006, Chapter 3.1.1 and Chapter 4.2) for linear regression or classification). For

example, the output of an MLP with linear activation function can be interpreted

as the mean of a conditional Gaussian distribution with a fixed variance, where we

condition on the input. Minimizing the squared error, under this assumption, is

equivalent to maximum likelihood.

For classification, depending on the activation function, we can define the out-

put units as being the success probability of a Bernoulli distribution or the event

probability of a multinoulli distribution conditioned on the input u.

By an abuse of notation 1, we will use p✓(t|u) to define this conditional prob-

ability density function described above. Because it is a conditional probability

function, the formulation of natural gradient descent, Equation (4.20), changes

into the following equation:

argmin�✓ L(✓ +�✓)

s. t. EE
u⇠⇡̃(u) [KL(p✓(t|u)||p✓+�✓(t|u))] = const.

(4.25)

Each value of u now defines a di↵erent family of density functions p✓(t|u), and
hence a di↵erent manifold. In order to measure the functional behaviour of p✓(t|u)
for di↵erent values of u, we use the expected value (over u) of the KL-divergence

between p✓(t|u) and p✓+�✓(t|u).
In defining the constraint of equation 4.25, we have chosen to allow ourselves

the freedom to compute the expectation over u using some distribution ⇡̃ instead

of the empirical distribution ⇡. Usually we want ⇡̃ to be ⇡ as it is shown in Peters

et al. (2003), though one can imagine situations when this would not be true. E.g.

when we want our model to look more carefully at certain types of inputs, which

we can do by biasing ⇡̃ towards that type of inputs.

Applying the same steps as before we can recover the formula for natural gra-

dient descent. This formula can be massaged further (similar to Park et al. (2000))

for specific activations and error functions.

1. E.g., for softmax output layer the random variable sampled from the multinoulli is a scalar
not a vector

99



Linear activation function

In the case of linear outputs we assume that each entry of the vector t, ti comes

from a Gaussian distribution centered around y(u)i with some standard deviation

�. From this it follows that:

p✓(t|u) =
oY

i=1

N (ti|y(u, ✓)i, �2) (4.26)

F = EE
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⇥
JT
y

J
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⇤

(4.27)

Here, J stands for the Jacobian matrix @y
@✓ . The subscript describes for which

variable the quantity is computed over.

Sigmoid activation function

In the case of the sigmoid units, i.e. y = sigmoid(r), we assume a binomial

distribution which gives us:

p(t|u) =
Y

i

yt
i

i (1� yi)
1�t

i (4.28)

log p gives us the usual cross-entropy error used with sigmoid units. We can

compute the Fisher information matrix as follows:
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h
EE
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hPo
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(4.29)

Note that diag(v) stands for the diagonal matrix constructed from the values

of the vector v and we make an abuse of notation, where by 1
y

we understand the
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vector obtain by applying the division element-wise (the i-th element of 1/
y

is 1/
y

i

).

Softmax activation function

For the softmax activation function, y = softmax(r), p(t|u) takes the form of

a multinoulli:

p(t|u) =
oY

i=1

ytii (4.30)

F = EE
u⇠⇡̃

"
oX

i=1

1

yi

✓
@yi
@✓

◆T @yi
@✓

#
= EE

u⇠⇡̃


JT
y

diag

✓
1

y

◆
J
y

�
(4.31)

4.3.2 Hessian-Free Optimization

Hessian-Free Optimization (HF) was recently introduced in Martens (2010);

Martens and Sutskever (2011) for training deep and recurrent models. It represents

one of the first works which show that one can achieve good results with deep

models with out relying on pre-training, the technique of initializing the weights

of the deep model by first performing, for each layer in turn, some unsupervised

learning task.

The algorithm is a second order method that relies on a truncated Newton strat-

egy for approximately inverting the Hessian. HF uses damping (and therefore it is a

trust region method), where the damping factor is usually updated during learning

by a Levenberg-Marquardt heuristic. What sets it apart from a standard trun-

cated Newton method is the use of a specific approximation of the Hessian called

the extended Gauss-Newton approximation of the Hessian introduced in Schrau-

dolph (2001). Other particular changes of the pipeline are also important, like a

modification of the stopping criterion for CG or backtracking, a strategy of going

backwards through the step of CG until finding the best step-length for minimizing

the function f . For HF, CG is also warm-started by using the previous descent di-

rection as a starting point, speeding up convergence of the algorithm if the Hessian

and gradient have not changed by much. One additional important achievement

of these works is the successful application of this complicated algorithm to large

scale problems.

We will focus our attention on the extended Gauss-Newton approximation,
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which played a crucial role in the success of the algorithm. Let us decompose

the error function into L ��(out) � r, where r represents the function from the input

of the model up to the output layer before applying the output activation function

�(out) and L is the loss function (applied on the output of the model). We can now

re-write the Hessian matrix as:

H =

✓
@r

@✓

◆T ✓@2L
@r2

◆✓
@r

@✓

◆
+

OX

i=0

✓
@L
@ri

◆✓
@2ri
@✓2

◆
(4.32)

Based on this formulation, Schraudolph (2001) argues that the second term
PO

i=1

⇣
@L
@r

i

⌘⇣
@2

r

i

@✓2

⌘
goes to 0 much faster when one is close to a minimum, so one

can approximate the Hessian using only the first term of the sum. This term is

named the extended Gauss-Newton approximation because in the linear case (when

�(out) is the identity function and L is the square error) one recovers the Gauss-

Newton approximation of the Hessian. We will denote it by GN defined below.

GN =

✓
@r

@✓

◆T ✓@2L
@r2

◆✓
@r

@✓

◆
(4.33)

This new approximation is particularly useful for corresponding output activa-

tion functions and loss functions, such as identity function and square error, sigmoid

and cross-entropy, softmax and negative log likelihood. In such a situation we say

that the error function matches the output activation function. In these cases the

Hessian @2L/@r2 is diagonal andpositive (it can be shown by algebraic manipulation

for each case seperately), making the whole approximation positive-definite. The

products GNx can also be computed e�ciently, similarly to Hx, though one has

to rely on both the R and the L operators. In the equation below we make the

additional note that the Hessian @2L
@r2 is diagonal and can easily be derived and

evaluated if the error functions matches the output activation function:

GNx = R

⇢
L, ✓, @

2L
@r2

L {L, ✓, 1}
�

(4.34)

For training recurrent models, HF relies on an additional regularization term

called structural damping. Structural damping asks that the hidden state of the

recurrent model does not change by much from one step to another. Provided that

a suitable distance measure is chosen that is paired with the hidden layer activation,

its second order Taylor expansion reduces to the second order term. Additionally
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we can take an extended Gauss-Newton approximation of this quantity, and, with

the distance measure denoted by d and the pre-activation value of the hidden state

by e, we get the approximation:

Gsd =

✓
@e

@✓

◆T ✓@2d
@e

◆✓
@e

@✓

◆
(4.35)

Computing Gsd defined by Equation (4.35) separately from GN would be im-

practical, but, as is apparent from Equations (4.33) (4.35), these matrices share

many computations. Therefore the linear combination GN +↵Gsd is actually quite

cheap to compute as shown in the equation:

GN + ↵Gsd =

✓
@e

@✓

◆T
"✓

@r

@e

◆T ✓@2L
@r2

◆✓
@r

@e

◆
+ ↵

✓
@2d

@e2

◆#✓
@e

@✓

◆
(4.36)

Natural gradient descent and Hessian-Free Optimization

As already mentioned, Hessian-Free Optimization relies on the extended Gauss-

Newton approximation of the Hessian, GN , which can be re-written as follows:

GN =
1

n

nX

i=1

"✓
@r

@✓

◆T @2 log p(t(i)|u(i))

@r2

✓
@r

@✓

◆#

= EE
u⇠⇡̃

⇥
JT
r

�
EE

t⇠⇡̃(t|u) [HL�r]
�
J
r

⇤
(4.37)

The last step of Equation (4.37) assumes that (u(i), t(i)) are i.i.d samples, and ⇡̃

stands for the distribution represented by the mini-batch 1 over which the matrix

is computed. A composition in the subscript, as in HL�r, implies computing the

Hessian of L with respect to r, with r being the output layer before applying the

activation function.

The reason for choosing this approximation over the Hessian is not computa-

tional, as computing both can be done equally fast. The extended Gauss-Newton

approximation is better behaved 2 during learning. This is assumed to hold because

1. subset of training examples that is used to compute a descent direction by some iterative
optimization technique

2. Such complex non-convex problems do not allow most of the time for any kind of convergence
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GN is positive semi-definite by construction, so one does not need to worry about

negative curvature.

It is known that the Gauss-Newton approximation (for linear activation function

and square error) matches the Fisher Information matrix. In this section we show

that this identity holds also for other matching pairs like sigmoid and cross-entropy

or softmax and negative log-likelihood for which the extended Gauss-Newton is de-

fined. By choosing this specific approximation, one can therefore view Hessian-Free

Optimization as being an implementation of natural gradient descent. We make the

additional note that Heskes (2000) makes similar algebraic manipulations as the

ones provided in this section, however for di↵erent reasons, namely to provide a

new justification of the algorithm that relies on distance measures. The original

contribution of this section is in describing the relationship between Hessian-Free

Optimization on the one hand and natural gradient descent on the other. This

relation iÂğs not mentioned anywhere in the literature as far as we are aware of.

In the case of sigmoid units with cross-entropy objective, HL�r is

HL�r
ij,i 6=j

= @2 P
k

(�t
k

log(sigmoid(r
k

))�(1�t
k

) log(1�sigmoid(r
k

)))

@r
i

@r
j

= @sigmoid(r
i

)�t
i

@r
j

= 0

HL�r
ii

= ... = @sigmoid(r
i

)�t
i

@r
i

= sigmoid(ri)(1� sigmoid(ri))

(4.38)

If we insert this back into the Gauss-Newton approximation of the Hessian and

re-write the equation in terms of J
y

instead of J
r

, we get the corresponding natural

gradient metric, Equation (4.29):

GN = 1
n

P
u

(i),t(i) J
T
r

HL�rJr

= 1
n

P
x

(i) JT
r

diag (y(1� y)) diag
⇣

1
y(1�y)

⌘
diag (y(1� y))J

r

= EE
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h
JT
y
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⇣

1
y(1�y)

⌘
J
y

i . (4.39)

The last matching activation and error function that we consider is the softmax

with cross-entropy. The derivation of the Gauss-Newton approximation is given in

Equation (4.40).

analysis; in general these properties are studied empirically by looking at the behaviour of the
algorithm on some benckmark task.
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Mij,i 6=j =
Po
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y
k
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k
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i

@y
k
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j

=
Po

k=1(�ki � yi)yk(�kj � yj)

= yiyj � yiyj � yiyj = �softmax(ri)softmax(rj)

Mii =
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j

= y2i (
Po

k=1 yk) + yi � 2y2i

= softmax(ri)� softmax(ri)softmax(ri)

(4.42)

Equation (4.41) starts from the natural gradient metric and singles out a matrix

M in the formula such that the metric can be re-written as the product JT
r

MJ
r

(similar to the formula for the Gauss-Newton approximation). In Equation (4.42)

we show that indeed M equals HL�r and hence the natural gradient metric is the

same as the extended Gauss-Newton matrix for this case as well. Note that � is

the Kronecker delta, where �ij,i 6=j = 0 and �ii = 1.

This identification between natural gradient and HF means that (in a non-trivial

way) HF is also a generalized trust region method that relies on a first order Taylor

expansion of the objective. There is also a one-to-one mapping between most of

the other heuristics used by Hessian-Free Optimization.

Following the functional manifold interpretation of the algorithm, we can re-

cover the Levenberg-Marquardt heuristic used in Martens (2010) if we consider a

first order Taylor approximation on the manifold. For any function f , if �✓ depicts

the picked descent direction and ⌘ the step size

f (✓t � ⌘�✓) ⇡ f(✓t)� ⌘
@f(✓t)

@✓t
�✓ (4.43)

This gives the reduction ratio given by Equation (4.44) which can, under the

assumption that p = @f(✓
t

)
@✓

t

F�1, be shown to behave identically with the one in

Martens (2010) (under the same assumption, namely that CG is close to conver-
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Structural damping (Martens and Sutskever, 2011), a specific regularization term

used to improve training of recurrent neural network, can also be explained from the

natural gradient descent perspective. Roughly it implies using the joint probability

density function p(t,h|u), where h is the hidden state, when writing the KL-

constraint. The quantity log p(t,h|u) will break in the sum of two terms, one

being the Fisher Information Matrix, the other measuring the change in h and

forms the structural damping term. While theoretically pleasing, however, this

derivation results in a fixed coe�cient of 1 for the regularization term.

We can be more flexible by using two constraints when deriving the natural

gradient descent algorithm, namely:

argmin�✓ L(✓ +�✓)

s. t. EE
u⇠⇡̃(u) [KL(p✓(t|u)||p✓+�✓(t|u))] = const.

and EE
u⇠⇡̃(u) [KL(p✓(h|u)||p✓+�✓(h|u))] = const.

(4.45)

If we apply the same steps as before for both constraints (i.e. replace them by

a second order Taylor expansion), the second term will give rise to the structural

damping term.

4.3.3 Natural gradient descent (TONGA)

In Le Roux et al. (2008) a new variant of natural gradient was introduced.

The algorithm assumes that the stochastic gradients we get from MSGD, where

each gradient is computed on a di↵erent mini-batch, are distributed according to

a Gaussian centered around the true gradient with some covariance matrix C.

One can, therefore, use the uncertainty given by C to correct the step that we

intend to take such that we maximize the probability of decreasing the generaliza-

tion error (expected negative log-likelihood), resulting in a formula similar to that

of natural gradient descent:
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�✓ =�rLC�1 (4.46)

While the probabilistic derivation requires the centered covariance C, in Le

Roux et al. (2008) it is argued that one can use the uncentered covariance U

resulting in a simplified formula:

�✓ ⇡ �rLEE(u,t)⇠⇡

⇣
@ log p(t|u)

@✓

⌘T ⇣
@ log p(t|u)

@✓

⌘��1

= �rLU�1

In Pascanu and Bengio (2014) we argue that this algorithm is not identical

with the natural gradient method proposed by Amari (1985) and, therefore, its

name is a misnomer. The discrepancy comes from the fact that the equation is

an expectation, though the expectation is over the empirical distribution ⇡(u, t) as

opposed to u ⇠ ⇡(u) and having t sampled from the model distribution t ⇠ p✓(t|u)
as is done in Amari’s work. It is therefore not clear if U tells us how p✓ would

change, whereas it is clear that Amari’s metric does.

One particular situation in which the matrices can be quite di↵erent is close to

or at a critical point. In such a situation we know that U will go to 0. The matrix

U is a sum of outer products of the gradients of the loss function L. Because we

are near a critical point of L, its gradients must vanish, which will make their outer

product to be close to 0 and hence U will be close to singular. However, the Fisher

Information matrix, F, does not have to go to zero, as it is not the covariance of

the gradients we follow to the local minima.

Another argument used to di↵erentiate between TONGA and natural gradient

is that the matrix U tends to be more rank deficient than F as it is composed

by summing fewer outer products (when computed over the same mini-batch of

examples). While Martens (2010); Schraudolph (2001) do not di↵erentiate between

TONGA and natural gradient descent, these papers, for example, do argue thatU is

more rank deficient compared to the extended Gauss-Newton approximation of the

Hessian (which we have previously shown to be identical to the Fisher Information

matrix).

Le Roux et al. (2008) also introduce a specific implementation of their algo-
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rithm (or more clearly a specific approximation of the inverse of U) that they call

TONGA. We will extend this name to refer to the whole algorithm within this

manuscript, rather than this specific implementation. In other words, whenever we

refer to TONGA we refer to the algorithm that uses the update step introduced in

Equation (4.47). This will help us di↵erentiate between this algorithm and Amari

(1985).

Le Roux and Fitzgibbon (2010) argues that natural gradient descent (and specif-

ically the TONGA variant) is a first order method, and, therefore, one can use

second order information to improve the descent direction. This results in the

following update rule:

�✓ = �rL

I+

H�1CH�1

n�

��1

H�1 (4.47)

Finally, we note that TONGA can be as e�ciently to implement as Hessian Free

Optimization or truncated Newton, because the product between the uncentered

covariance matrix U and some vector x can be computed as e�ciently using the L

and R operators:

Ux = L{f, ✓,R{f, ✓,x}}

Natural gradient descent (TONGA) as a generalized trust region method

While we argued that TONGA is not the same as Amari’s natural gradient

descent, the algorithm is, however, a generalized trust region method. To see

this consider the constrained optimization where we look at the first order Taylor

approximation of the loss, and where we also impose that the expected change of

the loss is constant:

argmin�✓ T1 {L(✓ +�✓)}
s. t. EE

u⇠⇡̃(u) [kL(✓ +�✓)� L(✓)k22] = const.
(4.48)

If we approximate L(✓+�✓) in the constraint by its first order Taylor expansion,

the constraint becomes:
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(4.49)

If we now use Lagrange multipliers to solve this constrained optimization, simi-

larly to the steps taken for natural gradient in Section 4.3.1, we recover the formula

proposed by TONGA.

4.3.4 Natural Conjugate Gradient

Natural gradient descent, being a first order method, can be extended to in-

corporate second order information, as also argued in Le Roux and Fitzgibbon

(2010).

If we are to follow the Riemannian manifold understanding of natural gradient,

one can easily implement a second order method on the manifold. See for example

Absil et al. (2008) that describes how various standard optimization techniques can

be extended to the Riemannian manifold case.

In Honkela et al. (2008, 2010) an extension of nonlinear conjugate gradient

on the manifold is proposed in the context of variational inference and specific

assumptions are made on the form of p✓ in order to make the algorithm tractable.

Gonzalez and Dorronsoro (2006) proposes a similar nonlinear conjugate gradient

extension, but this time for MLPs.

In both papers, the algorithm makes use of a diagonal approximation of the

matrix defining the metric and relies on the Polak–Ribiere formula for computing

a new conjugate direction. We argue that this approach is problematic, as one

needs to use the inner product of r[k] and r[k+1] to compute the factor � needed

for finding the new conjugate direction, where � is given by Equation (4.16). But,

since we are dealing with a Riemannian manifold, the two tangent vectors are likely

to lie in di↵erent tangential planes. Specifically, the metric matrix describing the

geometry around r[k], F[k], and the metric matrix describing the geometry around

r[k+1], F[k+1] are di↵erent. Following Absil et al. (2008), we would need to map r[k]

into the space of r[k+1], an expensive operation, before we can compute the inner
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product and apply the Polak–Ribiere formula for �.

Gonzalez and Dorronsoro (2006); Honkela et al. (2010) address these issues

by making the assumption that F[k] and F[k+1] are identical. This assumption is

detrimental to the algorithm because it goes against what we want to achieve. By

employing a conjugate gradient method we hope to make large steps, from which

it follows that the metric is very likely to change. Hence the assumption can not

hold.

A second approximation employed by both algorithms is to do a normal line

search for finding ↵, instead of moving along geodesics which is a very expensive

operation.

Being variants of natural gradient descent, the subproblem of finding the natural

gradient direction is a generalized trust region method. However, natural conjugate

gradient is not itself a generalized trust region method.

4.3.5 Krylov Subspace Descent

Vinyals and Povey (2012) introduces the Krylov Subspace Descent (KSD) al-

gorithm for deep learning. The method takes a di↵erent approach to solving the

linear system

GNx = �rLT .

We know that the solution �✓ lies in the Krylov subspace defined below:

Sn
✓

= span
�
�rLT ,�GNrLT ,�G2

NrLT , . . . ,�Gn
✓

N rLT
 

(4.50)

Therefore, the algorithm constructs a restricted version of the subspace Sk, with

only k vectors, to gain tractability, and then searches within this restricted subspace

for the best step using BFGS which is known to work well for lower dimensional

problems. Formally we have:

�✓ = �Sk =

2

66664

�1

�2

. . .

�k

3

77775

2

66664

�rL
�rLGN

. . .

�rLGk
N

3

77775

� = argmin
�2Rk

L(✓ + �Sk)

(4.51)
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A similar idea was explored previously in Mizutani and Demmel (2003). The

main advantage of this algorithm is that damping becomes implicit (as BFGS opti-

mizes directly L) and one does not need to worry about setting the corresponding

hyper-parameter. Also other details of the HF pipeline are not needed anymore,

like backtracking, or the custom stopping criterion of CG. The algorithm is also

reported to be somewhat faster than Hessian Free Optimization.

One additional detail of the algorithm proposed by Vinyals and Povey (2012),

which we believe to be of some importance, is that they modify the Krylov sub-

space in order to mimic the warm start of CG used for HF. Namely, they add one

additional vector to the subspace, vector given by the previous descent direction.

The subspace becomes in this case:

Sk = span
�
d[t�1],�rLT ,�GNrLT ,�G2

NrLT , . . . ,�Gk
NrLT

 
(4.52)

Natural conjugate gradient and Krylov Subspace Descent

Because Krylov Subspace Descent relies on the extended Gauss-Newton approx-

imation of the Hessian, like Hessian-Free Optimization, KSD implements a variant

of natural gradient descent. But there is an additional di↵erence between KSD and

HF that can be interpreted from the natural gradient descent perspective.

KSD adds to the Krylov subspace the previous search direction. We hypothesize

that due to this change, KSD is more similar to natural conjugate gradient than

natural gradient descent.

To show this we can rewrite the subproblem that KSD is solving as:

argmin
↵,�,�1,...,�

k

L

0

BBBBBBBBB@

✓ +

d[t]z }| {

�d[t�1] + ↵

2

66664

�1
↵
�2
↵

. . .
�
k

↵

3

77775

2

66664

rL
rLF
. . .

rLFk�1

3

77775

| {z }
⇡(rL)F�1

1

CCCCCCCCCA

(4.53)

From this formulation one can see that the previous direction plays a di↵erent

role than the one played when doing a warm restart for CG. The algorithm is remi-
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niscent of the nonlinear conjugate gradient. The descent directions we pick, besides

incorporating the natural gradient direction, also tend to be locally conjugate to

the Hessian of the error with respect to the functional behaviour of the model.

Additionally, compared to nonlinear conjugate gradient BFGS is used to compute

� rather than some known formula like equations (4.15), (4.16) and (4.17).

4.3.6 Improved natural conjugate gradient

Computing the correct conjugate direction for natural conjugate gradient, in-

troduced in Section 4.3.4, is di�cult. Mapping one gradient to the space in which

another gradient lies is expensive to compute in a generic manner, with out enforc-

ing strict constraints on the form of p✓. In this section we take inspiration from

the new interpretation of the KSD algorithm, Section 4.3.5, and show the utility

of such reinterpretations. In equation (4.53) we can see that � is computed by

minimizing the cost L with respect to both � and ↵. However the algorithm also

requires computing and storing a large Krylov subspace and re-parametrizing the

problem in this subspace (hence we also have to solve for �1, . . . �k). We propose

an algorithm that requires solving two subproblems for finding the new descent di-

rection. The first subproblem is the same as the one solved by a truncated Newton

approach. Namely we use linear CG to find the natural gradient. Once we have the

natural gradient we can solve a 2–dimensional subproblem in ↵ and � that finds a

new conjugate direction (based on the previous one) by minimizing the loss L:

min
↵,�

L
 
✓[t�1] +

"
↵[t]

�[t]

#"
rN[t]

d[t�1]

#!
(4.54)

The new direction is:

d[t] = rN[t]
+
�[t]
↵[t]

d[t�1] (4.55)

The resulting algorithm looks like a truncated Newton implementation of the

previously described natural conjugate gradient. The main di↵erence is that we do

not rely on a formula such as Polak–Ribiere to compute the new conjugate direction,

but rather use an o↵-the-shelf solver to find it by minimizing the loss. The new

conjugate direction might still not be the right direction, since, for example, the

o↵-the-shelf optimizer ignores the manifold structure. However, we are always

guaranteed to follow a descent direction, and, arguably, the best descent direction
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that we can find within this re-parametrized 2–D problem.

We can show that in the Euclidean space, given a second order Taylor approx-

imation of L(✓[t�1]), this approach will result in following conjugate directions.

Let d[t�1] be the previous direction and �[t�1] the step size such that L(✓[t�1] +

�[t�1]d[t�1]) is minimal for fixed d[t�1]. If we approximate L by its second order

Taylor expansion and compute the derivative with respect to the step size �[t�1] we

have:
@L
@✓

d[t�1] + �t�1d
T
[t�1]Hd[t�1] = 0 (4.56)

Suppose now that we take the next step which is defined implicitly by

L(✓[t] + �[t]d[t�1] + ↵[t]rT
N[t]

)

= L(✓[t�1] + �[t�1]d[t�1] + �[t]d[t�1] + ↵[t]rT
N[t]

),

where we minimize for ↵[t] and �[t]. If we replace L by its second order Taylor

series around ✓[t�1], compute the derivative with respect to �[t] and use the fact

that H[t�1] (where we drop the subscript) is symmetric, we get:

@L
@✓

d[t�1] + ↵[t]rN[t]
Hd[t�1] + (�[t�1] + �[t])d

T
[t�1]Hd[t�1] = 0.

Using the previous relation 4.56 this implies that

(↵[t]rN[t]
LT +�[t]d[t�1])THd[t�1] = 0, i.e. that the new direction is conjugate to

the last one.

4.3.7 Adding second order information – using the curva-

ture of the error

Using natural conjugate gradient is one way of introducing second order infor-

mation of the error in the equation. Another possible direction to achieve this is

the one proposed in Le Roux and Fitzgibbon (2010). In this section we will point

to yet another approach.

One can easily see that in the generalized trust region framework, used to derive

TONGA or natural gradient, one can rely on a second order Taylor expansion of

the loss, instead of a first order expansion.

Let us consider TONGA first. We can rewrite the constrained optimization

that we are attempting to solve as:
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argmin�✓ T2 {L(✓ +�✓)}
s. t. EE

u⇠⇡̃(u) [kL(✓ +�✓)� L(✓)k22] = const.
(4.57)

We can now take the same approximations as before of the expected change in

the loss, which gives us the simplified constrained optimization:

argmin�✓ L(✓) +rL�✓ + 1
2
(�✓)T H�✓

s. t. (�✓)T EE
u⇠⇡̃(u)

h
(rL)T rL

i
�✓ = const.

(4.58)

If we apply Lagrange multipliers again, we get that the form of the solution for

�✓ is the following:

�✓ = �rL
✓
1

2
H+ ↵U

◆�1

(4.59)

where ↵ 2 R is a real number that comes from applying the Lagrange multipliers

(and can be solved from additional constraints that result from this method). If we

use an inequality constraint we get the same form for the solution (with some extra

constraints on ↵). Instead of solving for ↵ from these constraints, which can be

complicated, we opt, as before, to consider ↵ to be a hyper-parameter and update

it heuristically.

The same derivation can be applied to Amari’s natural gradient, where we will

get the Fisher Information Matrix F instead of the uncentered covariance matrixU.

One can view these derivations as saying that both the covariance of gradients U

and the Fisher Information Matrix F can serve as meaningful “structured”damping

additive terms for the Hessian.

This method is di↵erent from Le Roux and Fitzgibbon (2010) which is attempt-

ing to use the Hessian of the true gradients, or from the natural conjugate gradient

where we are attempting to use the Hessian of the loss with respect to the functional

manifold.

Also, this formulation can be e�ciently implemented in a truncated Newton

framework. Any weighted sum between the Hessian and U or F can be e�ciently

computed by using the L and R operators. One simply sums the result of Ux or

Fx times ↵ with the result of Hx, each computed as described in previous sections.
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4.3.8 Mixing constraints

Finally we make the observation that within this trust region approach we can

always add multiple constraints. By doing so, and solving the constraint optimiza-

tion, we get the same generic form for the descent direction: the gradient times

the inverse of some matrix. This matrix, however, will be a weighted sum of the

di↵erent matrices produced by the di↵erent constraints.

In particular, if we are to combine Amari’s natural gradient descent with TONGA,

we get:

argmin�✓ T1 {L(✓ +�✓)}
s. t. EE

u⇠⇡̃(u) [kL(✓ +�✓)� L(✓)k22] = const.

and KL(p✓||p✓+�✓) = const.

(4.60)

This gives the following step:

�✓ = �rL (F+ ↵U)�1 (4.61)

We propose, as before, to heuristically take ↵ 2 R and treat it as a hyper-

parameter of the algorithm. Note that from the Lagrange multiplier method we

get a scalar factor in front of both U and F. We can fold one of these two factors

in to the learning rate. The parameter ↵ in Equation (4.61) refers to the ratio of

the factor in front of U divided by the factor in front of F.

We can also minimize a second order Taylor expansion of the loss. This results

in a step of the following form:

�✓ = �rL
✓
1

2
H+ ↵1F+ ↵2U

◆�1

(4.62)

where, again, ↵1,↵2 2 R can be considered hyper-parameters. It is easy to see

the combinatorial growth of the possible algorithms with the number of di↵erent

possible constraints that one can use. All these algorithms can be implemented

e�ciently using the same pipeline as the Hessian-Free Optimization algorithm.

Exploring these alternatives amongst themselves is a hard task. It is to be

expected that a single benchmark (or even multiple benchmarks) might not be
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su�cient, as each method might have di↵erent weaknesses and strengths. A more

solid approach might be to understand the weaknesses and strengths of each con-

straint and assume they compose in some simple way when used together. This

would o↵er some intuitions for deciding the right subset of constraints one might

need for a given task.

An even more proper avenue is to consider testing these algorithms on di↵erent

“unit tests” that check their robustness with respect to particular structures in the

error surface, as proposed in Schaul et al. (2014). Such a bottom up approach can

prove to be extremely e�cient in quickly determining which combinations make

sense and when.

4.4 Saddle-points

The bottom up approach of “unit-testing” proposed in Schaul et al. (2014) can

also be used to theoretically analyse these algorithms. In this section we will do this

by asking how di↵erent algorithms behave for a specific such unit test, the saddle

point. It represents a specific structure in the error surface. We start by explaining

the properties of this structure as well as providing some motivation for why saddle

points are very important when optimizing non-convex high-dimensional functions.

Understanding what happens around saddle points is useful as they represent

one failure mode of “blindly” porting optimization techniques meant for the convex

domain to the non-convex one. A descent direction for the second order approxi-

mation of a function (near a saddle point) is not necessarily a descent direction of

the function itself. This is due to negative curvature, that makes the model move

in an ascent direction. However, ignoring the negative direction (or damping it)

also leads to a suboptimal step.

4.4.1 Understanding saddle points

Saddle points are critical points of a function L which are neither minima nor

maxima. See, for example, the few illustrations provided in Figure 4.4. Note that

the Hessian is a symmetric matrix, and therefore its eigenvalues are real numbers.
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(a) Saddle point in 1–D given by x3 (b) Classical saddle point in 2–D
given by x2 � y2

(c) Monkey saddle given by x3 � 3xy2
(d) gutter structure given by

(x2 + y2 � 1)2

Figure 4.4: Illustrations of three di↵erent types of saddle points (a-c) plus a gutter structure
(d). Note that for the gutter structure, any point from the circle x

2 + y

2 = 1 is a minimum. The
shape of the function is like the bottom of a bottle of wine. This means that the minimum is now
a ring instead of a single point. The Hessian is singular at any of these points.

The critical points can be categorized or identified based on the signs of these

eigenvalues. Specifically, we know that :

1. If all eigenvalues of the Hessian are non-zero and positive, then the critical

point is a local minimum. The Hessian is positive definite.

2. If all eigenvalues are non-zero and negative, then the critical point is a local

maximum. The Hessian is negative definite.

3. If the eigenvalues are non-zero and we have both positive and negative eigen-

values, then the critical point is a saddle point with a min-max structure (see
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Figure 4.4 (b)). That is, if we restrict the function L to the subspace given by

the eigenvectors corresponding to positive eigenvalues, then the saddle point

is a minimum of this restriction. On the other hand, if we restrict L to the

subspace of the eigenvectors corresponding to negative eigenvalues, then the

saddle point becomes a maximum of this restriction.

4. If the Hessian matrix is singular, then the degenerate critical point can be

a saddle point, as it is, for example, for x3, x 2 R or for the monkey saddle

(Figure 4.4 (a) and (c)). If it is a saddle, then, if we restrict ✓ to only change

along the direction of singularity, the restricted function does not exhibit a

minimum nor a maximum. We would only have a plateau. When moving

from one side to other of the plateau, the eigenvalue corresponding to this

picked direction changes sign, being exactly zero at the critical point. Note

that an eigenvalue of zero can also indicate the presence of a gutter structure.

A gutter is a connected set of points that are all either minima, maxima or

saddle (depending on the rest of the eigenvalues). In the direction of the

gutter, the function is constant. This structure can have the shape of a line

or subspace if, for example, one or more coordinates do not a↵ect the function

at all. It can also have more interesting shapes.

In the enumeration above we make a distinction between gutters and plateaus.

In this text, a plateau is an almost flat region in some direction. This structure

is given by having the eigenvalues (which describe the curvature) corresponding

to the directions of the plateau be close to 0, but not exactly 0. Or, additionally,

by having a large discrepancy between the norm of the eigenvalues. This large

di↵erence would make the direction of “relatively” small eigenvalues look like flat

compared to the direction corresponding to large eigenvalues. A gutter is the

extreme case when the surface is perfectly flat and the eigenvalue is 0.

One simple way of analyzing (and understanding) nondegenerate critical points

is by relying on Morse’s lemma (see, for example, chapter 7.3, Theorem 7.16 in

Callahan (2010)). It states that locally to such a critical point there exists a

change of coordinates such that the function can be rewritten as a sum of squares:

L(✓⇤ +�✓) = L(✓⇤)� (�v1)
2 � . . .� (�vr)

2 + (�vr+1)
2 + . . .+ (�vn

✓

)2 (4.63)
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Note that �v are the new coordinates and that we subtract r squares and add

n✓ � r squares. r is the index (or index of inertia) of the nondegenerate critical

point and is equal to the number of negative eigenvalues of the Hessian. By abuse

of notation we will refer to the index of inertia also as the fraction of negative

eigenvalues (and denote it by r as well).

This reparametrization provides a clear geometrical understanding of the land-

scape around the critical point. We can explore each coordinate of the reparametrized

space in parallel. Along each dimension, the function has the shape of a bowl, where

the critical point is either a minimum (if the bowl is concave up) or a maximum (if

the bowl is concave down). It also shows that if all eigenvalues have the same sign

that the critical point becomes a local minimum or local maximum of the function.

Otherwise, it has the min-max structure and it is a saddle point. For a more in

depth understanding of saddle points from a geometrical/mathematical perspective

we recommend Chapter 7 of Callahan (2010).

Before going further in our analysis, one question we need to answer is: Why

should we look at saddle points ? How common are they ? Some results on these

questions come from statistical physics where the nature of critical points for ran-

dom Gaussian error functions on high dimensional continuous domains are studied.

See the seminal work of Bray and Dean (2007); Fyodorov and Williams (2007). The

results presented in these works rely on the replica theory, a mathematical technique

for analysing large dimensional systems with quenched disorder like spin glasses.

A recent description of this technique is given in Parisi (2007).

Recall that the index of a critical point r is the fraction of negative eigenvalues

of the Hessian, and let us denote the error obtained at the critical point by the

error that we obtain L. Any function will have a global minimum with L = Lmin

and r = 0 and a global maximum with L = Lmax and r = 1. Bray and Dean (2007)

counted the number of critical points of a random function in a finite volume of

N dimensions within a range of error L and index r. The authors found that any

such function with large enough N , has an exponential number of critical points. If

we project these points in the plane whose axes are given by L (i.e. the ammount

of error that we have) and r, they are overwhelmingly likely to be located on a

monotonically increasing curve L⇤(r) that rises from Lmin to Lmax as r goes from

0 to 1. The probability of a critical point to be O(1) away from the curve is

exponentially small in the dimensionality N of the space.
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This result states that most critical points that correspond to an error larger

than Lmin are highly likely to be saddle points and the larger the error L is, the

larger r becomes (we have more and more negative eigenvalues as the error at

the critical point increases). This means that the values of all local minima are

concentrated close to the value of the global minimum of the function.

Another way of understanding these findings is via random matrix theory. Bray

and Dean (2007) states that the eigenvalue distribution of the Hessian follows a

semi-circular law described by Wigner (1958), except that the semi-circle is shifted

according to L. In particular, for L = Lmin, the semi-circle is shifted so far to the

right that all eigenvalues are positive. This means that, besides having most critical

points be saddle points, for any such saddle point that corresponds to a reasonable

large error there are su�ciently many directions of low curvature (many eigenvalues

are very close to 0). This indicates the presence of a plateau like structure around

the saddle point, plateau that can a↵ect considerably stochastic gradient descent.

Fyodorov and Williams (2007) findings are very similar.

In Baldi and Hornik (1989) the error surface of a single hidden layer MLP

with linear units is analysed. The number of hidden units is assumed to be less

than the number of inputs units. Such an error surface shows only saddle-points

and no local minimum or local maximum. This result agrees with the observation

made by Bray and Dean (2007). In fact, as long as we do not get stuck in the

plateaus surrounding these saddle points, for such a model we are guaranteed to

obtain the global minimum of the error. A similar observation is also made in Saxe

et al. (2014), where the existence of symmetries in the weights of a deep linear

feedforward models leads to saddle structures.

In Saad and Solla (1995) the dynamics of stochastic gradient descent are anal-

ysed for soft committee machines. A soft committee machine is a single nonlinear

hidden layer MLP, whose output weights are all equal to 1 and there is no out-

put activation function. The paper explores how well a student model can learn

to imitate a teacher model which was randomly sampled. The approach taken is

analytical, where di↵erential equations are provided that describe the evolution

of the learning dynamics. An important observation of this work is showing that

learning goes through an initial phase of being trapped in the symmetric subspace.

In other words, due to symmetries in the randomly initialized weights, the network

has to traverse one or more plateaus that are caused by units with similar be-
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haviour. Rattray et al. (1998); Inoue et al. (2003) provides further analysis, stating

that the initial phase of learning is plagued with saddle point structures caused by

symmetries in the weights.

Mizutani and Dreyfus (2010) looks at the e↵ect of negative curvature for learn-

ing and implicitly at the e↵ect of saddle point structures in the error surface. Their

findings are similar. A proof is given where the error surface of a single layer MLP

is shown to have saddle points (where the Hessian matrix is indefinite). Other

small scale problems are also discussed such as the XOR problem.

4.4.2 Optimization algorithm and saddle points

One way of understanding Morse’s lemma is to look at a second order Taylor

expansion of the function L around a critical point. If we assume that the Hessian

is not singular, then there is a neighbourhood around this critical point where this

approximation is reliable.

In the case of a singular Hessian, if the function contains higher order terms,

then there is a direction in which the second order approximation is not su�cient.

Namely, consider a restriction of ✓ to the direction given by the eigenvector cor-

responding to the zero eigenvalue. Being a critical point the first order derivative

vanishes. By our assumption so does the second order derivative. Therefore the

behaviour of the function L in this projected subspace is described only by the

higher order derivatives, and hence a second order approximation (which would

predict a constant function) is not reliable for describing the dynamics of learning.

If the Hessian is not singular, given that the first derivative vanishes, the ap-

proximation of the function becomes:

L(✓⇤ +�✓) = L(✓⇤) + 1

2
(�✓)TH�✓ (4.64)

Let us denote by e[1], . . . , e[n
✓

] the eigenvectors of H and by �[1], . . . ,�[n
✓

] the

corresponding eigenvalues. We can now make a change of coordinates, by projecting

�✓ on these eigenvectors, making them the new basis of our coordinate system.

�v =
1

2

2

64
e[1]T

. . .

e[n
✓

]
T

3

75�✓ (4.65)
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L(✓⇤ +�✓) = L(✓⇤) + 1

2

n
✓X

i=1

�[i](e[i]
T�✓)2 = L(✓⇤) +

n
✓X

i=1

�[i]�v2
i (4.66)

This reparametrization looks similar to Morse’s lemma, with the exception that

we leave the basis vectors to have norm 1/2 for convenience and do not rescale them

by the absolute value of the eigenvalues. Leaving the eigenvalues outside allows

for a better understanding of the dynamics of learning around this nondegenerate

critical point by di↵erent optimization techniques. Now the di↵erent coordinates

(or tunable parameters) are independent of each other and can be analysed in

parallel.

Note that looking at the behaviour around these critical points is useful, as the

behaviour is not only relevant close to convergence. Due to the presence of saddle

points, the behaviour around critical points is relevant in all stages of learning.

For gradient descent we can see that the gradient points in the right direction.

Namely, if some eigenvalue �[i] is positive, then we move towards ✓⇤ in that direc-

tion because the restriction of L to the corresponding eigenvector is L(✓⇤)+�[i]�v2
i ,

which has a minimum when vi = 0. On the other hand, if the eigenvalue is nega-

tive, then the gradient descent will move away from ✓⇤ which is a maximum when

restricting the loss function to the corresponding eigenvector of said eigenvalue.

The downside of gradient descent is the scale of the step along each eigenvector.

The step we will take, for any direction e[i], is given by �2�[i]�vi. Because the

gradients are proportional to the corresponding eigenvalues of the Hessian, the

eigenvalue dictates how fast we move in each direction. Note that also, to avoid

divergence, the learning rate has to be at most 1/|�[max]|. Therefore, if there is a

large discrepancy between eigenvalues, then gradient descent will have to take very

small steps in some directions. This means that it might takes a very long time to

move away form the critical point, if the critical point is a saddle point, or to the

critical point if it is a minimum.

The Newton method, in its original form, solves the slowness problem by prop-

erly rescaling the gradients in each direction with the inverse of the corresponding

eigenvalue. The step we take now is given by ��vi. However, this approach can

result in moving in the wrong direction. Specifically, if an eigenvalue is negative,

then by multiplying with its inverse, the Newton method would change the sign of

122



the gradient along this eigenvector. Instead of taking the step away from ✓⇤ in the

direction of negative curvature (where ✓⇤ is a maximum), Newton method moves

towards ✓⇤. This e↵ectively makes ✓⇤ an attractor for the dynamics of the Newton

method, making this algorithm converge to this unstable critical point. Therefore,

while gradient descent might still escape saddle points in finite time, the Newton

method might not be able to.

Trust regions are one standard approach for using a second order method on a

non-convex problem. It relies on damping the Hessian in order to remove the neg-

ative curvature. As discussed before, damping the Hessian by adding the identity

matrix times some constant ↵ is equivalent to adding ↵ to each of the eigenvalues

of the Hessian. That is, we now rescale the gradients by multiplying them with
1/�[i]+↵, resulting in the step �

⇣
�[i]/�[i]+↵

⌘
�vi. In particular, to deal with negative

curvature, one usually increases the damping coe�cient ↵ enough such that even

for the most negative eigenvalue �[min] we have �[min] + ↵ > 0. We can see now

that because the denominators are all positive, the trust region method does not

change the sign in any of the possible directions of the gradient, and, hence, it will

move in a descent direction.

The downside is, again, the size of step along each eigenvector is not optimal.

In principle, if �[min]+↵ ⇡ 0, then, in this direction, the gradient will end up being

rescaled to a very large value. By the same argument as before, to avoid divergence,

the learning rate must now be very small and the algorithm might take a long time

to escape the saddle point. The same is true even if we make �[min]+↵ comfortably

large (say equal to |�[min]|). We will have, in this case, �[max]+↵� �[max], meaning

that we will move very slow in the direction given by the largest positive eigenvalue.

This mismatch of the step with the optimum step size becomes very significant when

the di↵erence between the most positive and most negative eigenvalue is large. One

way of understanding this behaviour is by realizing that, in the presence of negative

curvature, the second order approximation of the function becomes unreliable. To

deal with this issue, a trust region method has to drastically decrease the radius of

the trust region (increasing the damping factor ↵) and e↵ectively throwing away

any second order information. In such an extreme case this second order method

reduces to a first order one.

Besides damping, another approach to deal with negative curvature is to ignore

them. For example, we could stop the linear solver as soon as it starts incorporat-

123



ing directions of negative curvature when using a truncated Newton method (by

checking if the step we would take still results in reducing the error). BFGS, which

is a popular choice for scaling up the Newton method, deals with negative curvature

by damping the Hessian, but also by ignoring directions of negative curvature (see

(Nocedal and Wright, 2006, chapter 6.1)). Ignoring these directions means that we

will only approach the saddle point from the direction of positive curvature, with

out being able to escape it.

Another approach for speeding convergence is natural gradient descent, which

relies on the Fisher Information Matrix instead of the Hessian. The Fisher Informa-

tion Matrix is positive definite by construction, therefore one does not need to deal

with negative curvature explicitly. It is argued in Rattray et al. (1998); Inoue et al.

(2003) that natural gradient descent can address certain saddle point structures ef-

fectively. Specifically, if we have di↵erent units behaving in a very similar manner,

then the Fisher matrix will be close to singular. By taking a natural gradient step,

we move much further in the directions in which the matrix is almost singular.

This will force the model to di↵erentiate the behaviour of those units much faster

than gradient descent. If the model is initialized such that the Fisher matrix is not

singular, the algorithm will also not approach regions of singularity, and therefore

it will avoid the saddle points hidden in these regions. We argue that this might be

another argument in favor of the recent success of the Hessian Free Optimization

algorithm. As it was shown in Section 4.3.2, we know that HF corresponds to a

natural gradient algorithm.

Mizutani and Dreyfus (2010) argues that natural gradient (or more exactly the

Gauss-Newton method) also su↵ers from negative curvature. In this work they

look at least square problems, for which the well studied Gauss-Newton method is

defined, and where natural gradient descent coincides with this method. One par-

ticular known issue of the Gauss-Newton algorithm happens in the over-realizable

regime, when the model is over complete (i.e. the model has a lot more parameters

than it actually needs to model the task at hand). In this situations, while there

exists a stationary solution ✓⇤, the Fisher matrix around ✓⇤ is rank deficient. Nu-

merically, this means that the Gauss Newton direction can be (close to) orthogonal

to the gradient at some distant point from ✓⇤ (Mizutani and Dreyfus, 2010). A line

search in this direction could fail and it might lead to the algorithm converging to

some non-stationary point.
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Another weakness of natural gradient is that the residual S defined as the

di↵erence between the Hessian and the Fisher Information Matrix can be large close

to a saddle point when the function is highly nonlinear and its Hessian exhibits

large negative eigenvalues. In this case, the landscape close to the critical point

can be dominated by S. This implies a large discrepancy between the Hessian and

the Fisher Information Matrix, and therefore the rescaling provided by the Fisher

Matrix has to be suboptimal as it will not match the eigenvalues of the Hessian.

In the case of TONGA (Section 4.3.3) a similar observation holds as for natural

gradient. Because TONGA uses the gradients of the loss L, which vanishes at a

critical point, the matrix is more likely to end up being close to singular when we

approach any such critical point, even if the Hessian might not be. In such a case

the rescaling provided the TONGA is not the right one. We can directly use the

reformulation of our function close to the critical point to show this. Note that

by TONGA we refer to the algorithm that uses U, the uncentered covariance of

gradients, as the matrix that needs to be inverted. In particular we are not talking

about the approximation used for computing the inverse of U proposed in Le Roux

et al. (2008).

Let us look at some neighbourhood around a critical point ✓⇤. We can now

rely on the second order approximation of the function, and re-write this approx-

imation in the coordinate system given by the eigenvectors of the Hessian, see

Equation (4.66). In this system of coordinates each coordinate is independent.

If we assume further that the di↵erent examples in the mini-batch, when rewrit-

ten in the coordinate system given by �v, fall according to an isotropic Gaussian

distribution of standard deviation �2, and also each of these examples are within

the neighbourhood where our second order approximation makes sense then

EE�v

i

⇠N (0,�2)

⇥
(�[i]�vi)

2
⇤
= �2�[i]

2.

Therefore by using this matrix, we get that we rescale the gradients, in each direc-

tion, with 1/�2�[i]
2 . This means that the rescaled gradient will still be a function of

�[i], and hence non-optimal. In practice, our assumption that �vi ⇠ N (0, �2) will

not hold and the distance from the critical point will play a role in the makeup of

U.
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4.5 Addressing the saddle point problem

In order to address the saddle point problem let us look for a solution within

the family of generalized trust region methods. We know that the sign of the eigen-

values of the Hessian can result in flipping the direction of the gradient along the

corresponding eigenvector. Therefore it is safe to assume that we want to consider

a generalized trust region method that minimizes a first order approximation of

the loss under some constraint. This allows for a formula that is not in terms of

the Hessian.

Indeed we want the curvature information to come from the constraint that we

use, but we do want the algorithm to be such that we only use the curvature to

decide on the step length (not the direction).

4.5.1 Constraining the change in the gradient – squared

Newton method

The Hessian is a measure of change in the gradient. We argue that, within a

generalized trust region approach, the trust region should indicate how much we

can trust the first order approximation of the cost L. That is, when the first order

approximation deteriorates in some direction, we want to shrink the trust region

in said direction, and if the first order approximation is very reliable in some other

direction, we want to increase the trust region in that direction.

Given that the first order Taylor approximation of L is given by projecting the

step �✓ on the gradient, one can argue that as long as the gradient does not change

when we add to the parameters some value �✓, the first order approximation is

reliable. That is, if @L/@✓
��
✓
is about the same as @L/@✓

��
✓+�✓

, then the first order

approximation of L at ✓ is about the same as the first order approximation of L at

✓ +�✓.

Assume now that we are to take a small steps when we are at ✓. Because the

gradient does not change, the subsequent step, after this first initial small step,

will point in the same direction as the previous one. Therefore we are better o↵ to

move further when the gradient does not change. We fix a maximal change in the

gradient that we allow, and define the trust region based on this maximal change.

Formally this translates into:
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argmin�✓ T1 {L(✓ +�✓)}
s. t. krL(✓ +�✓)�rL(✓)k22 = const.

(4.67)

We can expand our constraint by taking a first order approximation of rL(✓+
�✓) which gives:

rL(✓ +�✓)�rL(✓) ⇡ rL(✓) +H�✓ �rL(✓) = H�✓ (4.68)

This means that our constraint translates into:

krL(✓ +�✓)�rL(✓)k22 = (�✓)T HTH�✓ = const (4.69)

From this we get a solution of the form:

�✓ = �rL
�
HTH

��1
(4.70)

One intuitive way of understanding this approach, is that we consider a ball,

whose radii are scaled according to the eigenvalues of HTH, which correspond to

the squared eigenvalues of H. The radii of our trust region reflect, therefore, the

local curvature of the function.

The disadvantage of this formulation is that we rely on the squared eigenvalues

of the Hessian when defining the radii of the trust region. It is easy to show

that close to a critical point, once we do a change of coordinates based on the

eigenvectors of the Hessian, this method will use the square of the eigenvalues

to scale the gradient in each direction. That means that in each direction will

have the gradient of form �
⇣

1/�[i]

⌘
�vi, which is inverse proportional to the norm

of the eigenvalues (though it preserves the right sign). Because of this inverse

proportionality, when we have a big discrepancy between the largest and smallest

eigenvalue, the model will be forced to move too slowly in some directions, resulting

in a suboptimal step.

One advantage of this approach is that, as with the previous algorithms, it

can be e�ciently implemented in a truncated Newton approach. To compute the
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product HTHx, we just apply twice the formula for computing Hx.

4.5.2 Limit the influence of second order terms – Saddle-

Free Newton Method

The observations made for di↵erent optimization techniques states that, close

to nondegenerate critical points, what we want to do is to rescale the gradient in

each direction e[i] by 1/|�[i]|. This achieves the same rescaling as the Newton method,

while preserving the sign of the gradient. This means that if the gradient says that

we should move away from ✓⇤, the rescaled step will still move away. Saddle points

are not attractors of the dynamics of this approach, as they are to the dynamics of

the Newton method.

The idea of taking the absolute value of the eigenvalue was briefly suggested

before, see for example in Nocedal and Wright (2006, Chapter 3.4) or in Murray

(2010, Chapter 4.1). However, we are not aware of any proper justification of this

algorithm or even a proper detailed exploration (empirical or otherwise) of this

idea.

The problem is that one cannot simply replace H by |H|, where |H| is the

matrix obtained by taking the absolute value of each eigenvalue of H, with out

proper justification. For example, one obvious question is: are we still optimizing

the same function? While we might be able to argue that we do the right thing close

to critical points, can we do the same far away from these critical points? In what

follows we will provide such a justification for replacing H with |H| by employing

the generalized trust region framework. Namely we want to define k and d in the

following equation, such that, when solving this constrained optimization using

Lagrange multipliers, we get back �✓ = �rL|H|�1 :

�✓ = argmin
�✓

Tk{L, ✓,�✓} with k 2 {1, 2}

s. t. d(✓, ✓ +�✓)  r
(4.71)

We first note that k must be 1. If k is 2, then the step will be a function of H

rather than |H|. Having k = 1 also makes sense because we know that a second

order approximation is not reliable when we have negative curvature. Next, we

need to design a distance measure d such that it will produce |H|.
The matrix |H| is a measure of the local curvature of the loss L. We therefore
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want, similar to the Squared Newton method proposed in Section 4.5.1, to define

the radius of the trust region according to the curvature of the function.

To achieve this, the Squared Newton method looked at the change in the gradi-

ent of the loss L. The gradient is a ratio of the change in L divided by the change

in the parameter, when �✓ ! 0. The nature of this ratio is di↵erent from that

of the loss function. One can become aware of this by assigning units to the loss

function 1. If so, the constraints end up being expressed in di↵erent units compared

to the first order Taylor approximation of the loss. This is a sign that there is a

rescaling term missing that is a function of �✓ between the constraint and the

function we need to minimize. We end up ignoring this rescaling factor (by assum-

ing that it is constant with respect to �✓) when we apply the Lagrange multipliers

method.

In other words, the change in the gradients does not tell us how far from ✓ we

can assume L to have the about the same first order approximation, but rather

how fast the first order of L would change per ✏ change in the parameter, which is

not a reliable measure of trustworthiness for the trust region.

The proper question to ask is how far from ✓ can we trust our first order

approximation of L. One measure of this trustfulness is given by how much the

second order term of the Taylor expansion of L influences the value of the function

at some point ✓ +�✓. That is we want the following constraint to hold:

d(✓, ✓ +�✓) = |T2{L, ✓,�✓}� T1{L, ✓,�✓}|
= |L(✓) +rL�✓ + 1

2
�✓TH�✓ � L(✓)�rL�✓|

= 1
2
|�✓TH�✓|  r

(4.72)

where rL is the partial derivative of L with respect to ✓ and r 2 R is some small

value that indicates how much discrepancy we are willing to accept between our

first order approximation of L and the second order approximation of L.
Note that the distance measure d takes into account the curvature of the func-

tion. It uses the curvature to decide how far from ✓ we have that its first order

approximation is still reliable. If we have high curvature in some direction, we

expect the corresponding radius of the trust region to be small and if have low

curvature, the radius will be larger.

1. This suggestion was made by Surya Ganguli.
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The proposed distance, however, does not easily allow to solve for �✓ in more

than one dimension. If we take the square of the norm to remove the absolute

value, we get a function that is quartic in �✓ (the term is raised to the power 4).

To address this problem we rely on the following Lemma:

Lemma 5. Let A be a nonsingular square matrix in Rn⇥Rn, and x 2 Rn be some

vector. Then it holds that |xTAx|  xT |A|x, where |A| is the matrix obtained by

taking the absolute value of each of the eigenvalues of A.

Proof. Let e[1], . . . e[n] be the di↵erent eigenvectors of A and �[1], . . .�[n] the corre-

sponding eigenvalues. We now re-write the identity by expressing the vector x in

terms of these eigenvalues:

|xTAx| =

�����
X

i

(xTe[i])e[i]
TAx

�����

=

�����
X

i

(xTe[i])�[i](e[i]
Tx)

�����

=

�����
X

i

�[i](x
Te[i])

2

�����

We can now use the triangle inequality |
P

i xi| 
P

i |xi| and get that

|xTAx| 
X

i

|(xTe[i])
2�[i]|

=
X

i

(xTe[i])|�[i]|(e[i]Tx)

= xT |A|x

Lemma 5 shows that

d(✓, ✓ +�✓) = |�✓TH�✓|  �✓T |H|�✓

so we enforce our constraint on this upper bound of the distance, instead of the

distance directly, resulting in the following generalized trust region method:
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�✓ = argmin
�✓

L(✓) +rL�✓

s. t. �✓T |H|�✓  r
(4.73)

Note that, as was discussed before when we introduced natural gradient, the

inequality constraint can be turned into an equality one as the first order approxi-

mation of L has a minimum at infinity, which means that the step will always be

on the boundary of the trust region. We can use the Lagrange multipliers method,

which gives us:

�✓ = �rL|H|�1 (4.74)

As before, we do not solve for the Lagrange coe�cient in terms of r, but rather

fold it into the learning rate for which we carry out a line search. The resulting

algorithm has the desired behaviour around critical points, where it uses the right

step size (as predicted by the Newton method) while also being able to escape saddle

points. That is, if we go back to the approximation of the function near a critical

point proposed in Equation (4.66), this method will move on each coordinate by

�vi, which is the optimal speed according to the curvature of the function.

Far away from a critical point, the method also moves in the right direction

because of its justification as a generalized trust region method. Namely, far away

from the critical point, the method defines a neighbourhood in which the first

order approximation of L is reliable and minimizes this approximation within this

neighbourhood. This means that we always follow a descent direction of L. We

call this algorithm Saddle-Free Newton method.

The description of the algorithm suggest that it should behave very well in

practice. In fact, if we do not have negative curvature, the algorithm converts into

the Newton method. This makes the algorithm ideal for compact models, where

we can get close to fully compute the whole Hessian and do an eigen decomposition

of this matrix. For example, recurrent networks discussed in the next chapters are

compact models.

In general, however, the di�culty of this proposed approach is in scaling it

up. Specifically, the standard pipeline employed by HF can not be directly applied

because there is no e�cient way of computing |H|x. The R and L operators can

not yield this computation.
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One approach of approximating this method is to rely on the Squared Newton

method introduced previously. If we assume that all eigenvalues of the Hessian are

clustered around the same value, then we can use the following identity:

|H|x ⇡ 1

|�[max]|
HTHx (4.75)

The value of �[max] can easily be approximating using the Power method. One

can also view this approach as using a specific per iteration scaling of the matrix

HTH. Normally this scaling would fold back into the learning rate, but if we use

damping for this matrix by adding some other matrix after we rescaled HTH, then

the rescaling becomes important.

In particular, the Fisher Information Matrix is believed to approximate well the

Hessian while being positive definite. By relying on the justification in Section 4.3.8,

we could use the Fisher Information Matrix to damp the squared Newton (where we

rescale HTH). This could lead to minimizing even more the di↵erence between this

computed matrix and the matrix |H| corresponding to taking the absolute value

of the eigenvalues of the Hessian. The additive term from the Squared Newton

should help natural gradient descent when the FIM matrix becomes singular (due

to negative curvature) in some direction while the Hessian is not. The advantage

of such an approach is that it is e�cient to compute in the framework introduced

for the Hessian-Free Optimization.

More principled approaches might also be possible. We regard the problem

of scaling up Saddle-Free Newton as a future research direction. At this point,

this thesis will only introduce the algorithm from a theoretical point of view, and

argue that this algorithm takes an optimal step near a critical point. In the next

section we will also demonstrate the e↵ectiveness of the algorithm on a small scale

experiment where we can a↵ord to compute the full Hessian.

4.5.3 Benchmark

Small scale experiments

In this section we run experiments on a scaled down version of MNIST, where

each input image is rescaled to be of size 10 ⇥ 10. This rescaling allows us to

construct models that are small enough such that we can implement the exact
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Newton method and Saddle-Free Newton method, with out relying on any kind of

approximations.

As a baseline we also consider mini-batch stochastic gradient descent, the de

facto optimization algorithm for most neural networks. We additionally use mo-

mentum to improve the convergence speed of this algorithm. The hyper-parameters

of mini-batch SGD – the learning rate, mini-batch size and the momentum con-

stant – are chosen using random search (Bergstra and Bengio, 2012). We pick the

best configurations from approximately 80 di↵erent choices. The learning rate and

momentum constant are sampled on a logarithmic scale, while the mini-batch size

is sampled from the set {1, 10, 100}. The best performing hyper-parameter values

for SGD are provided in Table 4.1.

The Damped Newton method is a trust region method where we damp the

Hessian H by adding the identity times the damping factor. No approximations

are used in computing the Hessian or its inverse (beside numerical inaccuracy due

to machine precision). For the Saddle-Free Newton we also damp the matrix |H|,
obtained by taking the absolute value of the eigenvalues of the Hessian. At each

step, for both methods, we pick the best damping coe�cient from the following

values: {100, 10�1, 10�2, 10�3, 10�4, 10�5}. We do not perform an additional line

search for the step size, but rather consider a fixed learning rate of 1. Note that

by searching over the damping coe�cient we implicitly search for the optimum

step size as well. These two methods are run in batch mode. The results of these

experiments are shown in Figure 4.5. Figure 4.5 (a) shows the minimum training

error reached by di↵erent algorithms as a function of the model size. The plot

provides empirical evidence that, as the dimensionality of the problem increases,

the number of saddle points also increases (exponentially so). We argue that for

the larger model (50 hidden units), the likelihood of an algorithms such as SGD

or Newton method to stop near a saddle point becomes higher (as the number of

saddle points is much larger) and therefore we should see these algorithms perform

worse in this regime. The plot confirms our intuition. We see that for the 50 hidden

units case, Saddle-Free outperforms the other two methods considerably.

Figure 4.5 (b) depicts the training error versus the number of epochs 1 that the

model already went through. This plot suggests that Saddle-Free behaves well not

1. An epoch measures the number of steps it takes for the model to see all the examples in
the training set once.
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(a) (b)

(c) (d)

Figure 4.5: Empirical evaluation of di↵erent optimization algorithms for a single layer MLP
trained on the rescaled MNIST dataset. In (a) we look at the minimum error obtained by the
di↵erent algorithms considered as a function of the model size. (b) shows the optimum training
curve for the three algorithms. The error is plotted as a function of the number of epochs (passes
through the entire dataset). (c) looks at the evolution of the norm of the largest positive eigenvalue
of the Hessian and (d) at the norm of the largest negative eigenvalue of the Hessian.
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Model size learning rate momentum constant mini-batch size

5 units 0.074 0.031 10
25 units 0.040 0.017 10
50 units 0.015 0.254 1

Table 4.1: Best performing hyper-parameters for stochastic gradient descent.

Figure 4.6: The plot on the left depict the training error versus the index (fraction of negative
eigenvalues) for di↵erent critical points found nearby the path taken by di↵erent runs of the
Saddle-Free Newton method. The critical points are discovered using the Newton method. The
plot on the right shows the distribution of eigenvalues of the Hessian for three di↵erent critical
points selected based on their error. Note that the y-axis is on a log scale.

only near a critical point but also far from them, taking reasonable large steps.

In Figure 4.5 (c) we look at the norm of the largest positive eigenvalue of the

Hessian as a function of the number of training epochs for di↵erent optimization

algorithms. Figure 4.5 (d) looks in a similar fashion at the largest negative eigen-

values of the Hessian. Both these quantities are approximated using the Power

method. The plot clearly shows that initially there is a direction of negative curva-

ture (and therefore we are bound to go near saddle points). The norm of the largest

negative eigenvalue is close to that of the largest positive eigenvalue initially. As

learning progresses, the norm of the negative eigenvalue decreases. For stochastic

gradient descent and Damped Newton method, however, even at convergence we

still have reasonably large negative eigenvalues, suggesting that we have actually

stalling to a saddle point rather than a local minimum. For Saddle-Free Newton

method the value of the most negative eigenvalue decreases considerably, suggesting

that we are more likely to have converged to an actual local minimum.
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Figure 4.6 is an empirical evaluation of whether the properties predicted by Bray

and Dean (2007) for random Gaussian error functions hold for neural networks.

To obtain this plot we used the Newton method to discover nearby critical

points along the path taken by the Saddle-Free Newton algorithm. We consider 20

di↵erent runs of the Saddle-Free algorithm, each using a di↵erent random seed. We

then run 200 jobs. The first 100 jobs are looking for critical points near the value of

the parameters obtained after some random number of epochs (between 0 and 20)

of a randomly selected run (among the 20 di↵erent runs) of Saddle-Free Newton

method. To this starting position uniform noise is added of small amplitude (the

amplitude is randomly picked between the di↵erent values {10�1, 10�2, 10�3, 10�4}
The last 100 jobs look for critical points near uniformally sampled weights (the

range of the weights is given by the unit cube). The model used is the 50 hidden

units MLP, and the dataset is the same rescaled version of MNIST.

In Figure 4.6, the plot on the left shows the index of the critical point (fraction of

negative eigenvalues of the Hessian at the critical point) versus the training error

that it obtains. This plot shows that all critical points, projected in this plane,

align in a monotonically decreasing curve, as predicted by the theoretical results

on random Gaussian error functions(Bray and Dean, 2007). Empirically, it also

seems that there are many more critical points for small index values, compared to

intermediate values of the index.

The plot on the right looks at the distribution of the eigenvalues of the Hessian

at 3 di↵erent critical points picked according to the error that they realise. Note

that the plot is on a log scale on the y-axis. These distributions do not follow the

semicircle rule, as predicted by the theory of random matrices. This is probably

caused by the structure of the neural network (and of the task). However, the

generic observation of (Bray and Dean, 2007), that as the error decreases the dis-

tribution shifts to the right (except the peak around 0) seems to hold. The fact

that we have a large number of eigenvalues at 0, and a few eigenvalues that are suf-

ficiently large suggest that any of these saddle-points are surrounded by plateaus,

in which the di↵erent algorithms might end up taking a suboptimal step.

Larger scale experiments

Next, we look at a larger scale problem. Our goal is to provide some empirical

evidence for the intuitions we put forward for each of the algorithms discussed in
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previous sections. In particular, we are interested in comparing natural gradient

descent with natural conjugate gradient (as formulated by Honkela et al. (2008);

Gonzalez and Dorronsoro (2006)) where we implement both algorithms with the

same pipeline. We also want to show that our proposed improvement of natural

conjugate gradient in Section 4.3.6 does better than the standard natural conjugate

gradient algorithm that relies on the Polak–Riebiere formula to compute the new

conjugate direction.

In our analysis we also consider TONGA, the Squared Newton method intro-

duced in Section 4.5.1 and the e↵ect of considering a second order approximation of

the loss, Section 4.3.7, or mixing multiple constraints in a generalized trust region

method, Section 4.3.8.

We carry out our benchmark on the Curves dataset, using the 6 layer deep

auto-encoder from Martens (2010). The dataset is still somewhat small, it has only

20K training examples of 784 dimensions each. This allows to run all algorithms

in batch mode with out running into memory issues. However the model that we

use is of reasonable size.

All methods except SGD use the truncated Newton pipeline proposed for Hessian-

Free Optimization Martens (2010). In particular, we use warm restart (where the

previous solution is scaled by .8) for linear CG. We use the same stopping criterion

and a Jacobi preconditioner (Chapelle and Erhan, 2011). To find the optimum step

size we do a line search, and the matrix that has to be inverted is damped. The

damping coe�cient is adapted based on the Levenberg-Marquardt heuristic. Its

initial value is set to 3 for all algorithms.

The benchmark is run on Tesla M2070 Nvidia cards, using Theano (Bergstra

et al., 2010) for cuda kernels. We rely on scipy.optimize.fmin_cobyla as the

o↵-the-shelf optimizer used for natural conjugate gradient to simultaneously find

the right step size and new conjugate direction (see Section 4.3.6). For both im-

plementation of natural conjugate gradient (using the o↵-the-shelf optimizer or the

Polak–Riebiere formula) we forcefully reset the conjugate direction to the natural

gradient after three steps (value obtained based on cross validation).

For SGD we use a batch size of 100 examples. The optimum learning rate,

obtained by a grid search, is 0.01. We do not anneal the learning rate and we do

not use any additional enhancements like momentum.

Note that while we show squared error (to be consistent with Martens (2010))
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we are actually minimizing the cross-entropy during training (i.e. the gradients

are computed based on the cross-entropy cost, square error is only computed for

visualization).

The first observation that we can make is that natural conjugate gradient, which

adds second order information to natural gradient, does perform better than natural

gradient (and it seems to outperform, in terms of time, SGD as well). In particular,

NatCG-L is doing particularly well. This algorithm relies on an o↵-the-shelf solver

(in this case COBYLA) to find both the right step size and the next conjugate

direction as we proposed in Section 4.3.6. This provides evidence supporting our

hypothesis that relying on the Polak–Riebiere formula when implementing natural

conjugate gradient (even if we reset the direction often) is harmful in practice.

To apply any of these formula one needs to compute the inner products between

vectors belonging to di↵erent tangential spaces. If we ignore this fact and assume

the metric does not change from one step to another (as NatCG-F does), the

assumption will hurt learning. The metric matrix stays about the same only if one

takes smallish steps.

The second observation is that natural gradient descent shows flat regions (al-

beit small in terms of steps). For example look at the region around the training

error of 16, or even around the training error of 11. We hypothesize that these flat

regions might be evidence that the algorithm is taking a suboptimal step close to

some saddle point that forces the Fisher Information matrix to be close to singular.

The third observation regards the Squared Newton method we proposed in

Section 4.5.1. As discussed in our analysis, because it rescales the gradient in

each direction by one over the squared eigenvalues of the Hessian, this algorithm

always takes a suboptimal step. This is reflected in practice, where the algorithm

underperforms. However, the curve for this algorithm also shows the least amount

of flat regions (at least in the runs examined for constructing this plot). Flat regions

of the training curve can be caused by the algorithm being trapped close to some

saddle point. This can indicate that while there might be a saddle points close to

which the Fisher Information matrix is close to singular (forcing the algorithm to

take smaller steps), the Hessian might be well behaved in terms of the norm of the

eigenvalues. Therefore the matrix HTH never gets close to singular and we do not

end up stalling in the plateau around the saddle point.

We can couple this observation with the behaviour of mixing the Squared New-
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Figure 4.7: The plots depict the training curves on a log scale (x-axis) for di↵erent learning
algorithms on the Curves dataset. On the y-axis we have training error on the whole dataset. Top
plot compares (in terms of iterations or steps) stochastic gradient descent (SGD), Squared Newton
method (SNM), a mixture of Squared Newton method (rescaled by the largest eigenvalue of the
Hessian) plus natural gradient (SNM+NGD), natural gradient descent (NGD), the enhanced
natural conjugate gradient, where we solve for both the step size and new conjugate direction as
described in Section 4.3.6 (NatCG-L), natural conjugate gradient based on the Polak–Riebiere
formula (NatCG-F) and TONGA (COV). Bottom plot shows the same algorithms in terms of
clock time (seconds).
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Figure 4.8: The plots depict the training curves on a log scale (x-axis) for di↵erent learning
algorithms on the Curves dataset. On the y-axis we have training error on the whole dataset. It
shows the e↵ect of adding second order information (by considering a second order approximation
of the loss) to natural gradient descent (NGD+H) and to TONGA (COV+H) compared to either
just natural gradient descent (NGD) or TONGA (COV).

ton method with natural gradient descent. For SNM+NGD, we rescaled the ma-

trix HTH by 1
|�[max]|

, factor computed at each step by running the Power method.

Additionally the weight for HTH is of 5., while that for F is just 1. These hyper-

parameters had been cross-validated.

We can assume that NGD is quite reliable everywhere, except possibly near

saddle points with strong negative curvature. Therefore the Fisher is used as a

damping scheme, that helps reducing, in general, the skewness introduced by taking

the square of the eigenvalues of the Hessian.

We believe that as long as the eigenvalues cluster together, by relying on Equa-

tion (4.75), this method roughly approximates the Saddle-Free Newton method.

In terms of iterations, we can see this mixture of the two algorithm performing

decently well. However, as learning progresses, the eigenvalue distribution of the

Hessian becomes more skewed, making the algorithm slow down fast. We argue

that this plot makes a speculative prediction that the Saddle-Free Newton method

would do well when is scaled up to larger problems. By inspecting the largest

eigenvalues that we use to rescale the HTH matrix at each step, and under the
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assumption that we also have eigenvalues close to 0, we make the following ob-

servation. Initially, the di↵erence between the largest and smallest eigenvalue of

HTH is on the order of 102. However, as learning progresses the largest eigenvalue

grows very fast, getting to be a few orders of magnitude larger. This makes the

distribution of the eigenvalues more spread out and results in making the algorithm

fail.

In this work we do not provide a way of scaling up the Saddle-Free Newton

method to large problems. We leave this as future work.

TONGA seems to also underperform compared to all other algorithms. We

argue that there are two reasons for this. One reason is that the matrix U, for the

same amount of data, is approximated by summing fewer outer products compared

to natural gradient. The metric U is therefore more rank deficient. This a↵ects

the behaviour of linear CG, and makes the method more prone to noise.

The second reason is that near any critical point, by virtue of the fact that

the gradients go to 0, U becomes close to singular. When the metric is close to

singular while the Hessian is not, the method can result in taking very suboptimal

steps. This results in the algorithm getting trapped in the plateaus around these

critical points. We believe such behaviour happens around the value of 11. Natural

gradient descent also gets “stuck” for a very brief moment in this plateau. It

might be that around this stage in training there is some saddle point structure,

where U becomes close to singular, while F does not (or at least not by the same

degree). This pushes TONGA to almost converge to said critical point, while

natural gradient manages to escape it in a few steps.

We believe that the strength of TONGA is hidden in its original formulation,

where a crude approximation of U is used (such as a diagonal approximation).

Because we know U is in general not well behaved, it does not make sense to waste

a lot of time on approximating it well. The key insight of this algorithm is that

one can re-use the gradients computed by a first order method to find a cheap

yet meaningful rescaling of each coordinate of the parameters. If this rescaling is

crudely approximated, making the overhead of each step insignificant compared

to stochastic gradient descent, then the algorithm becomes e�cient in practice.

However, if we waste lots of computations to get a very reliable approximation of

these values, then the algorithm under performs.

In Figure 4.8 we see the e↵ect of incorporating second order information by con-
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sidering a second order approximation of the loss L when deriving either TONGA

or natural gradient descent as generalized trust region methods. An alternative

view of these approach is that we use the Fisher Information matrix (for natural

gradient) or the uncentered covariance of the gradients (for TONGA) to damp the

Hessian.

As expected, if there is some saddle point on the pathway of these algorithm,

the damping term will be used to reverse the negative direction by adding some

positive value to the eigenvalue. This results in suboptimal steps. We do not

use an adaptive scheme for the damping coe�cient, which might result in better

behaviour. For a fixed damping coe�cient, we do not seem to be able to find a

value which does not lead to a slow down near said critical points.

Experiments with MinResQLP

We also provide some experiments where instead of linear CG we rely on Min-

ResQLP as the linear solver. In particular, MinResQLP is more reliable when the

matrix to be inverted is close to singular or is not positive definite. For these

experiments, we also explore the e↵ect of using smaller mini-batches for natural

gradient.

We provide two runs, one in which we use small mini-batches of 5000 examples,

and one in which we run in batch mode. In both cases all other hyper-parameters

were manually tuned. The learning rate is fixed at 1.0 for the model using a mini-

batch size of 5000 and a line search was used when running in batch mode.

For comparison, we also show the behaviour of natural conjugate gradient.

As before we provide the two variants, one based on the Polak-Riebiere formula

(Gonzalez and Dorronsoro, 2006) and the enhancement proposed in Section 4.3.6,

implemented using scipy.optimize.fmin_cobyla to solve the two dimensional

line search.

The first observation that we can make is that natural gradient descent can

run reliably with smaller mini-batches, as long as the gradient and the metric

are computed on di↵erent samples and the learning rate used is su�ciently small

to account for the noise on the natural direction (or the damping coe�cient is

su�ciently large). This can be seen from comparing the two runs of natural gradient

descent. Our result is in the spirit of the work of Kiros (2013), though the exact

approach of dealing with small mini-batches is slightly di↵erent.
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Figure 4.9: The plots depict the training curves on a log scale (x-axis) for di↵erent learning
algorithms on the Curves dataset. On the y-axis we have training error on the whole dataset. The
left plot shows the curves in terms of iterations, while the right plot show the curves as a function
of clock time (seconds). NGD stands for natural gradient descent descent with a mini-batch of
5000 and a fixed learning rate. NGD-L is natural gradient descent in batch mode where we use
a line search for the learning rate. NatCG-L uses an scipy.optimize.fmin_cobyla for finding
both learning rate and the new conjugate direction. NatCG-F employs the Polak-Ribiere formula.
SGD stands for stochastic gradient descent.
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4.6 Properties of natural gradient descent

In this section we turn our attention back to natural gradient descent and discuss

some specific properties of this approach. The algorithm is phrased as a learning

problem. It makes the assumption that there is a model which can be understood

as a distribution p✓ over the data.

At each iteration of natural gradient we minimize some loss function L under

the constraint of a fixed change in the KL-sense in the model p✓. By this it means

that the algorithm itself can not be applied to any function f unless we can identify

in this function some meaningful model p✓.

It is natural to ask whether there is some advantage for explicitly taking into

account the model or not. We argue that there are a few such advantages.

One of them is that natural gradient descent can be used in the online regime.

For this to hold, we assume that even though we only have a single example available

at each time step, in this “online regime”, we also have access to a su�ciently large

set of held out examples. If we are to apply a second order method in this regime,

computing the gradient on the single example and the Hessian on the held out set

would be conceptually problematic. The gradient and Hessian will be incompatible

as they do not refer to the same function. However, for natural gradient descent,

the metric comes from evaluating an independent expectation that is not related to

the prediction error. It measures an intrinsic property of the model. It is therefore

easier to motivate using a held-out set (which can even be unlabelled data as

discussed in Section 4.6.1).

In Desjardins, Pascanu, Courville, and Bengio (2013), we show a straightforward

application of natural gradient to Deep Boltzmann Machines. It is not obvious how

the same can be done for a standard second order method. Probabilistic models

like RBMs and DBMs do not have direct access to the cost they are minimizing.

One usually can only approximate the necessary gradients in some e�cient way.

Fortunately, measuring the change in the KL of the model distribution does not

require one to evaluate (or define) the loss we want to minimize, we just need to

be able to sample from the model distribution.

Natural gradient descent is robust to local re-parametrization of the model. This

comes from the constraint that we use. The KL-divergence is a measure of how

the probability density function changes, regardless on how it was parametrized.
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Sohl-Dickstein (2012) explores this idea, defining natural gradient descent as doing

whitening in the parameter space.

The metric F has two di↵erent forms, as it can be seen in equation (4.21), that

of the expected Hessian of log p and that of the covariance matrix of r log p. Note,

however, that it is not the Hessian of the cost, nor the covariance of the gradients

we follow to a local minimum. The gradients are of log p✓ which acts as a proxy

for the cost L. The KL-surface considered at any point ✓ during training always

has its minimum at ✓, and the metric we obtain is always positive semi-definite by

construction which is not true for the Hessian of L.
If we look at the KL constraint that we enforce at each time step, it does not

only ensures that we induce at least some ✏ change in the model, but also that

the model does not change by more than ✏. We argue that this provides some

kind of robustness to over-fitting. The model is not allowed to move too far in

some direction d if moving along d changes the density computed by the model

substantially.

4.6.1 Using unlabelled data

When computing the metric of natural gradient descent, the expectation over

the target t is computed where t is taken from the model distribution for some

given u: t ⇠ p(t|u). For the standard neural network models this expectation can

be evaluated analytically (given the form of p(t|u)). This means that we do not

need target values to compute the metric of natural gradient descent.

Furthermore, to compute the natural gradient descent direction we need to

evaluate two di↵erent expectations over u. The first one is when we evaluate the

expected (Euclidean) gradient, while the second is when we evaluate the metric. In

this section we explore the e↵ect of re-using the same samples in computing these

two expectations as well as the e↵ect of improving the accuracy of the metric F by

employing unlabelled data.

Statistically, if both expectations over u are computed from the same samples,

the two estimations are correlated to each other. If we use di↵erent examples,

then the two estimations are less correlated. We hypothesize that using the same

examples can lead to an increase in the over-fitting of the current mini-batch.

Figure 4.10 provides empirical evidence that our hypothesis is correct. Vinyals and
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Povey (2012) make a similar empirical observation.

As discussed in Section 4.6, enforcing a constant change in the model distribu-

tion helps ensure stable progress but also protects from large changes in the model

which can be detrimental (could result in over-fitting a subset of the data). We

get this e↵ect as long as the metric provides a good measure of how much the

model distribution changes. Unfortunately the metric is computed over training

examples, and hence it will focus on how much p changes at these points. When

learning over-fits the training set we usually observe reduction in the training error

that result in larger increases of the generalization error. This behaviour can be

avoided to some extent by natural gradient descent if we can measure how much

p changes far away from the training set. This will allow us to slow down in the

region of over-fitting, and either by switching to di↵erent examples, or by early-

stopping, we can avoid over-fitting those specific examples. To explore this idea we

propose to increase the accuracy of the metric F by using unlabelled data, helping

us to measure how p changes far away from the training set.

We explore empirically these two hypotheses on the Toronto Face Dataset

(TFD) (Susskind et al., 2010) which has a small training set and a large pool

of unlabelled data. Note that in the large data regime, the mini-batch over which

we compute the metric might be large enough to contain all the necessary statis-

tics. That is, the claims made here are especially important for smaller datasets.

Figure 4.10 shows the training and test error of a model trained on fold 4 of TFD,

though similar results are obtained for the other folds.

We used a two layer model, where the first layer is convolutional. It uses

512 filters of 14x14, and applies a sigmoid activation function. The next layer is a

dense sigmoidal one with 1024 hidden units. The output layer uses sigmoids as well

instead of softmax. The data is pre-processed by using local contrast normalization.

Hyper-parameters such as learning rate, starting damping coe�cient have been

selected using a grid search, based on the validation cost obtained for each config-

uration.

We used a fixed learning rate of 0.2 (with no line search) and adapting the

damping coe�cient using the Levenberg-Marquardt heuristic.

When using the same samples for evaluating the metric and gradient we used

mini-batches of 256 samples, otherwise we used 384 other samples randomly picked

from either the training set or the unlabelled set. We use MinResQLP as a linear
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Figure 4.10: The plot depicts the training error (left) on a log scale and test error (right) as
percentage of misclassified examples for fold 4 of TFD. On the x-axis we have the number of
updates. Dotted green line (top, worst) stands for using the same mini-batch (of 256 examples)
to compute the gradient and evaluate the metric. Dashed blue line (middle) uses a di↵erent mini-
batch of 384 examples from the training set to evaluate the metric. The solid red line (bottom,
best) relies on a randomly sampled batch of unlabelled data to estimate the metric.

solver, the picked initial damping factor is 5., and we allow a maximum of 50

iterations to the linear solver.

We notice that re-using the same samples for the metric and gradient results in

worse global training error (training error over the entire train set) and worse test

error.

Our intuition is that we are seeing the model over-fitting, at each step, the

current training mini-batch. At each step we compute the gradient and the metric

on the same examples. There can be, within this mini-batch, some direction in

which we could over-fit some specific property of these examples. Because we only

look at how the model changes at examples in the mini-batch, when computing

the natural gradient step, the metric will not oppose this over-fitting behaviour.

However the step is not useful for generalization, nor is it useful for the other

training examples (e.g. if the particular deformation is not actually correlated with

the class it needs to predict). This means that on subsequent training examples

the model will underperform, resulting in a worse overall error.

On the other hand, if we use a di↵erent mini-batch for the gradient and for

the metric, it is less likely that the same particular feature to be present in both

the set of examples used for the gradient and those used for the metric. So either

the gradient will not point in said direction (as the feature is not present in the

gradient), or, if the feature is present in the gradient, it may not be present in the

examples used for computing the metric. That would lead to a larger variance, and

hence the model is less likely to take a large step in this direction.
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Using unlabelled data results in better test error for worse training error, which

means that this way of using the unlabelled data acts like a regularizer.

4.6.2 Robustness to reorderings of the train set

We want to test the hypothesis that, by forcing a constant change in the model,

in the KL sense, the model avoids to take large steps towards specific patterns,

being more robust to the reordering of the train set.

We repeat the experiment from Erhan et al. (2010), using the NISTP dataset

introduced in Bengio et al. (2011) (which is just the NIST dataset plus deforma-

tions) and use 32.7M samples of this data. The original experiment attempts to

measure the importance of the early examples in the learnt model. To achieve this

we respect the same protocol as the original paper described below:

Algorithm 4 Protocol for the robustness to the order of training examples

1: Split the training data into two large chunks of 16.4M data points
2: Split again the first chunk into 10 equal size segments
3: for i between 1 and 10 do
4: for steps between 1 and 5 do
5: Replace segment i by new randomly sampled examples that have not been

used before
6: Train the model from scratch
7: Evaluate the model on 10K heldout examples
8: end for
9: Compute the segment i mean variance, among the 5 runs in the output of

the trained model (the variance in the activations of the output layer)
10: end for
11: Plot the mean variance as a function of which segment was resampled

Figure 4.11 shows these curves for mini-batch stochastic gradient descent and

natural gradient descent.

Note that the variance at each point on the curve depends on the speed with

which we move in function space. For a fixed number of examples one can artificially

tweak the curves by decreasing the learning rate. With a smaller learning rate we

move slower, and hence the model, from a function point of view, does not change

by much, resulting in low variance. In the limit, with a learning rate of 0, the model

always stays the same. In order to be fair to the two algorithms compared in the

plot, natural gradient descent and stochastic gradient descent, we use the error

148



(a)

Training set

A B C D E F G H I J

valid
error
49.8%

(b)

Figure 4.11: The plot describes how much the model is influenced by di↵erent parts of an online
training set. (a) exemplifies how the training dataset was split into two, and then the first half
into ten segments A, B, C, D, E, F, G, H, I, J. (b) shows the variance induced by re-shu✏ing
of data examples in one of these segments, when everything else was kept the same. Note that
natural gradient descent shows order of magnitude lower variance than SGD. See text for more
information.

on a di↵erent validation set as a measure of how much we moved in the function

space. This helps us to chose hyperparameters such that after 32.7M samples both

methods achieve about the same validation error of 49.8%. Both models are run

on mini-batches of the same size, 512 samples. We use the same mini-batch to

compute the metric as we do to compute the gradient for natural gradient descent,

to avoid favoring NGD over MSGD.

The model we experimented with was an MLP of only 500 hidden units. We

use a constant damping factor of 3 to account for the noise in the metric (and

ill-conditioning since we only use batches of 512 samples). The learning rates were

kept constant, and we use 0.2 for the natural gradient descent and 0.1 for MSGD.

The results are consistent with our hypothesis that natural gradient descent

avoids making large steps in function space during training, staying on the path

that induces least variance. Note that relative variance might not be a↵ected

when switching to natural gradient descent. That is to be expected, as, in the

initial stages of learning, any gradient descent algorithm needs to choose a basin

of attraction (a local minimum) while subsequent steps make progress towards
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this minimum. That is, the first examples must have, relatively speaking, a big

impact on the learnt model. However what we are trying to investigate is the overall

variance. Natural gradient descent (in global terms) has lower variance, resulting in

more consistent functional behaviour regardless of the order of the input examples.

MSGD might move in a direction early on that could possibly yield over-fitting

(e.g. getting forced into some quadrant of parameter space based only on a few

examples) resulting in di↵erent models at the end. This suggests that natural

gradient descent can deal better with nonstationary data and can be less sensitive

to the particular examples selected early on during training.

4.7 Summary and Outlook

In this chapter we looked at di↵erent optimization techniques for learning. We

proposed the framework of generalized trust region methods, a straightforward ex-

tension of traditional trust region approaches, which can be summarized by two

modifications. The first one is that we allow minimization of a first order Taylor

expansion of the function L. In contrast, trust region methods are typically defined

based on a second order approximation of L. The second change is that we use a

constraint on the distance between ✓ and ✓+�✓, as given by some distance measure

d, instead of just looking at the norm of �✓.

We have discussed that many of the recently proposed algorithms for training

deep models can be cast in this framework. Specifically we looked at natural

gradient descent, Hessian-Free Optimization, TONGA, natural conjugate gradient

and Krylov Subspace Descent. In our analysis we found a few relationships between

these algorithms. Due to the use of the extended Gauss-Newton approximation of

the Hessian, Hessian-Free Optimization and Krylov Subspace Descent can both

be understood as natural gradient descent approaches. In contrast, TONGA is

not the same as the original natural gradient algorithm proposed by Amari. It is,

though, still a generalized trust region method. TONGA can be understood as the

algorithm that minimizes a first order approximation of the loss restricted to the

region in which the expected change in the loss is bounded by some constant.

Natural conjugate gradient is an extension of the natural gradient descent. It

incorporates second order information by moving in directions conjugate to the
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Hessian of the loss with respect to the functional manifold. In our work, we high-

lighted one particular weakness of a previously proposed variant of the algorithm

and specifically to the set of approximations it suggested. Based on our interpre-

tation of Krylov Subspace Descent as a variant of natural conjugate gradient, we

proposed an alternative way of computing a new conjugate direction which behaves

better in practice.

These algorithms can all be e�ciently implemented using a truncated Newton

approach where the products between the Hessian or the Fisher Information matrix

or the covariance of gradients and some vector can be e�ciently computed using

the R and L operators (described in Section 4.1.1).

In Section 4.4 we looked at the saddle point problem. Based on a change

of coordinates (similar to Morse’s lemma) we rephrased the function L around a

nondegenerate critical point as a weighted sum of squares, where the weights are

given by the eigenvalues of the Hessian. This formulation allows for an intuitive

description of the behaviour of di↵erent algorithms in the neighbourhood of the

critical point. The analysis reveals that most algorithms take a suboptimal step.

The derivation also indicates what an ideal step would be around this critical point.

We provide a proper justification for an algorithm that realizes exactly this step,

an algorithm that we called Saddle-Free Newton method.

This analysis is important as there is evidence that there exists many saddle

points for large dimensional non-convex problems. Around any of these critical

points the first order gradients will vanish, making SGD slow down considerably

along some directions. This suggests that using the curvature (be it of the under-

lying manifold or of the function) is important not only close to the local minima,

but in the early stages of learning as well (where we are close to saddle points).

In Section 4.6 we introduced two properties of the natural gradient method.

The first property is that the algorithm can use unlabeled data to enhance the

precision of the considered metric, which results in a regularization e↵ect. This

is particularly useful if we want to use smaller mini-batches for the algorithm.

We validate that natural gradient (where the metric is damped accordingly) can

run on medium sized mini-batches of 256 examples. It is however necessary to use

di↵erent samples to approximate the metric versus the samples used to approximate

the gradient. Otherwise the algorithm over-fits the current mini-batch, resulting in

both worse training and test error.
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For a second order method, it might be harder to justify computing the Hessian

on di↵erent examples than the gradient in order to avoid over-fitting the current

mini-batch. If did so, the Hessian would not be the Hessian of the function we are

computing the gradients of.

If we use held out data to compute the metric, we get a sense of variability

in the model far away from the training set. This can make the algorithm more

cautious resulting in a regularization e↵ect.

The second property that we empirically evaluated is the robustness of nat-

ural gradient to the order of the training set (compared to stochastic gradient

descent). This robustness can help (to some degree) when working with non-

stationary datasets.

We regard our work as preliminary, and there are many gaps left to fill. A

more thorough comparison of the di↵erent possible algorithms is still lacking. In

particular we believe that any such benchmark should also be accompanied by some

form of unit-testing that checks the performance of the algorithms on particular

patterns in the error surface. From our results it seems that natural gradient,

an algorithm also validated in the literature, behaves quite well in general. The

extension of natural gradient descent, natural conjugate gradient seems to do pretty

well as well.

We regard the study of the Saddle-Free Newton method as a promising future

research direction. In this work we only provided a theoretical description of the

algorithm and small scale experiments. Scaling it up is still an open question

that we intend to study. Other possible research directions include studying the

properties of saddle points for large neural networks, and exploring the relationship

between these saddle points of the training error and expected generalization error.

For example, is the index of a critical point correlated with how likely we are

to over-fit the training set? Also our analysis focuses on nondegenerate critical

points. Because of the recurrent weight matrix, one can argue that the gradient

of a recurrent network contains the value of some parameter raised to odd powers,

which could induce degenerate critical points. Can our analysis be extended to

such critical points?

Interesting questions are left unanswered for natural gradient as well. Empirical

evaluation of this algorithm in the “online” regime or on non-stationary data, for

example, is lacking. A thorough benchmarking of the algorithm on many task, or
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even scaling the algorithm to very large tasks are other possible future research

directions.

We conclude this chapter with two remarks. Optimization for learning right

now has a “hammer” widely used by everyone in the community. This “hammer”

is stochastic gradient descent. It is still not clear why this algorithm manages to

be so resilient in all benchmarks, even when compared with theoretically much

more powerful algorithms. We believe that these more powerful algorithms have

“failure modes” that make them underperform, and properly understanding these

weaknesses can help figure out when the“hammer”might not be su�cient anymore.

Also the field has a bias towards models that work well with this “hammer”. Is

there something to be lost from this bias ?

One other interesting research direction that we want to consider is paralleliza-

tion. SGD is inherently a sequential algorithm. It relies on taking many small and

computationally cheap steps. When one tries to parallelize such an algorithm it

becomes somewhat di�cult. Each step is already relatively cheap, and after each

such step is taken one has to, in principle, communicate between all nodes the new

value of the parameters. This communication between nodes usually becomes the

bottleneck of any such parallelization scheme. In situations like these people rely on

asynchronous approaches, see, for example, Paine et al. (2014). These approaches

end up not making proper use of all the nodes involved.

When one increases the mini-batch size for SGD, in order to gain more compu-

tations to be parallelized at each step, the gain is minimal. The reason is that SGD

is a fairly ine�cient way of exploiting a large mini-batch of data. Instead a second

order method or natural gradient approach is much more e�cient, as it does not

simply take the mean of the di↵erent gradients.

For second order methods, each step is expensive, which means that one has to

communicate and update less often the parameters of the model. How to parallelize

each iteration of a second order method is still an open question. For example CG

does not necessarily seem to be easy to parallelize, though a di↵erent approach

can be taken to compute the descent direction. For example, if we are to restrict

our problem to a Krylov subspace, computing this subspace can easily be done in

parallel, where di↵erent nodes look at di↵erent rows of the matrix that need to be

inverted (parallelization along the model).

We believe that parallelization of higher order methods is an interesting and
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attractive future direction which unfortunately is somewhat unexplored at this

time.

154



5 Training recurrent neural
models and memory

In this chapter we attempt to focus on recurrent neural networks and ask the

question: Can we learn recurrent models that exhibit stable memory that can store

some information for a possibly unbounded period of time? This is a restriction of

the generic optimization problem discussed in the previous chapter to a particular

challenging issue that arises in optimizing recurrent networks.

In this chapter we will rely on some of the concepts introduced in Section 2.3,

which o↵ers a refresher in recurrent models. In Section 5.1 we provide some mo-

tivation for why it is important to study and understand memory for recurrent

models. Section 5.2 introduces some basic concepts of dynamical system theory,

that we will use later. Section 5.3 provides some intuitions on how memory might

be achieved in a recurrent model and what we mean by memory in this context.

Section 5.4 provides a specific recurrent structure that results in models that can

exhibit memory. To achieve this we cheat by providing hints during learning about

how the memory should behave. In Section 5.5 we describe in detail two problems

of training RNNs that a↵ect its ability to exhibit long memory traces, the explod-

ing and vanishing gradients problem. Sections 5.7 and 5.8 provide two heuristic

solutions for these problems. We show, in Section 5.9 that by employing these

heuristic solutions we are able to train an RNN that exhibit long memory traces

with out using hints. Finally we provide some conclusions in Section 5.10.

The content of this chapter overlaps with the two papers I published together

with my co-authors, Pascanu and Jaeger (2011); Pascanu, Mikolov, and Bengio

(2013). I borrowed figures and entire paragraphs from these works when writing

the chapter. The first paper describes the concept of working memory and provides

a model that can exhibit memory when trained with hints. The second paper

focuses on the exploding and vanishing gradients problem for training recurrent

neural networks. Please see Section 1.1 for a detailed description of my personal

contribution to these papers.
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5.1 Motivation

As argued in Section 2.3, recurrent neural models have the same power as

Turing machines, and can, therefore, simulate any algorithm. This makes them

more powerful than feedforward networks, and, from a pure theoretical perspective,

it is to be expected that in order to achieve artificial intelligence we would need

recurrent connections 1.

In particular, the power of recurrent neural networks comes from the fact that

they can exhibit memory. Memory is the crucial component that is needed to be

able to simulate a Turing machine. We use these memory traces to remember where

we are inside a program and to know what is the next step that needs to be taken.

Leaving aside the ultimate goal, artificial intelligence, even for tasks at hand

memory seems to be necessary to obtain good results. For example, let us assume

we are to work on a language modelling task, where we are asked to predict which

is the next word in a sequence of words. By remembering the last seen words we

have a better chance of predicting what comes next. We can rely on short term

information to make a good guess, namely on the last few words in the sequence.

In this case we would basically want to add the missing word from the current

phrase. But long term information can also help. It can define the topic of this

stream of words. This topic can influence the distribution of words. Or it might

define the stylistic characteristics of the writer (or current speaker), which might

put more probability on some words or phrases over others.

For speech or video the same principle holds. For example, in a noisy audio

signal we can use the previously uttered words to disambiguate the current word

or even phoneme, which due to the noise might not be recognizable. It is hard to

tell how far in the past we need to go to do a good job at this disambiguation. For

example the word might be a new name, which we can disambiguate by remem-

bering the initial phase of the conversation, when the name was first introduced.

In the case of video, understanding the current action of an actor highly depends

on the motion it did before.

We as humans rely heavily on context (memory and history) to disambiguate

the world around us and to define our intentions or the intentions of others. That

1. Arguably, artificial intelligence could also be based on some hybrid model, that only uses
neural networks to map complicated patterns to simpler ones and relies on something else, like
symbolic logic, for the control and decision making modules.
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is to say there is a lot of information in the way events are ordered in time, and if

we want to get better at solving some tasks we have to exploit this information.

One option is to imitate the computer architecture, and have the processing

neural network connected to stacks or memory bu↵ers in the same way the CPU

is connected to RAM. These bu↵ers or stacks do not themselves need to be neural,

but actual memory bu↵ers made readily available in some programming language.

We argue, however, that there is something to be gained from organically inte-

grating memory into the neural network, as it is done, for example, in a recurrent

network. By doing so we allow the memory to influence continuously the ongo-

ing processing of the model at every level, in the sense of providing context to

the processed information. Getting these interactions in the classical framework

can be cumbersome. In the recurrent network the stored information directly and

implicitly interacts with the computations carried out by the model.

The advantage of complex RNN based signal processing can be richness and

dynamical adaptivity of internal representations. The interaction between mem-

ory and the ongoing processing of the model can result in high-dimensional, self-

organizing (in interesting and complex ways), dynamically evolving memory traces

that can be continuously adapted through learning.

Another way of phrasing these properties is the following. A shielded memory

bu↵er will do exactly what it is programmed to do. Store the information inside

the bu↵er until there is a signal that says this information needs to be read by

the model or replaced or deleted. Each bit of information is stored separately in a

stable manner and can not get lost or destroyed by accident (unless the memory

gets corrupted which is not to be expected with modern memory bu↵ers). This

shielding suggests a priori knowledge of what and why we want to memorize. Given

that the memory is finite, the system needs to immediately identify the bits that

need to be stored, and when some new important information comes along, it needs

to know what stored bits can be sacrificed and completely removed.

When going “neural” the hope is that such hard decision do not need to be

made. There is no barrier between the stored information and the neural network.

This implies, on one hand side, that it is easy for the information to be corrupted

or lost. In fact, the first step that needs to be taken for RNN research is to show

that they actually can store some information with out accidentally corrupting it.

On the other hand some subset of these corruptions might be useful and can
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result in a form of clustering of the stored information. The model can end up

vaguely remembering events, or similar events can be confused or replaced by some

nominal category. Such kind of confusions can lead to interesting generalizations,

helping the model do well on inputs it never seen before, for which it is not clear

what needs to be remembered.

Obtaining the same in the classical framework involves a lot of hand engineering

and understanding how these generalization events could happen.

These intuitions can be used to motivate this research direction, though sys-

tematic proof that such adaptive neural memory provides an advantage over the

alternatives is still missing. In this chapter we are attempting to take some small

steps in this direction, and hope that future research will be able to elucidate this

question further.

5.2 Brief introduction to Dynamical Systems

for Recurrent Networks

For a detailed and complete introduction of Dynamical Systems theory we invite

the reader to look at Strogatz (1994) which provides an intuitive treatment of the

topic. In here we will only provide an informal treatment of the subject, limited to

the concepts that we will use later on.

Dynamical Systems theory tries to analyse the evolution of some predefined sys-

tem in time under some fixed evolution rule that describes how the model changes

from one time instant to the next. Historically, these kind of approaches date back

to the invention of calculus and classical mechanics by Sir Isaac Newton and they

have seen drastic improvements by the work of researchers as Poincaré, Lorenz ond

Mandelbrot to name just a few. Today it forms an important field on its own with

applications in economics, analysis of fluid motion, quantum field theory, general

relativity and as we will briefly discuss here for recurrent neural networks.

Formally a dynamical system is defined by a phase space or state space S, whose
coordinates describe the state of the system, a set of times T , and a dynamical rule

R : S ⇥ T ! S that gives the consequent state s 2 S.
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The dynamical system can be continuous, if the set T is continuous, or discrete.

Depending on the nature of R, the dynamical system can be linear or nonlinear,

deterministic or stochastic. If additionally to the previous state s 2 S and the

current time step t 2 T the dynamical rule takes some additional input u, then it

is not an autonomous dynamical system, otherwise it is.

In our work we will focus on deterministic, discrete and nonlinear dynamical

systems, where the rule is given by a map ⇢ : S ! S. Most of the concepts we will

use refer to autonomous dynamical systems. See Pascanu and Jaeger (2011) for a

description of such concepts for an input-driven model. Some of these concepts for

input-driven models are also analyzed in Manjunath and Jaeger (2013).

5.2.1 Phase portraits and bifurcation diagrams

The evolution of a dynamical system in time forms a trajectory or orbit that

describes the sequence of states the system goes through when started from some

initial state s[0]. The set of all possible trajectories that a system can go through

represents a phase portrait. A visualization of these phase portraits usually depicts

only a few important trajectories.

One approach to analysing dynamical systems is to analyse their behaviour once

the bias induced by the initial state disappears. In such an analysis we usually look

at attractors. Loosely speaking, an attractor is a set of points to which all neigh-

bouring trajectories converge. More strictly, an attractor A satisfies the following

properties:

– any trajectory that starts in A stays in A (A is an invariant set)

– There exists an open set U such that any trajectory that starts in U will

converge to A. Formally the distance between s[t], where s[t] describes the

system at time t, and A goes to 0 as t goes to infinity. The set U is called

the basin of attraction of A.

– A is minimal, that is there is no subset of A that satisfies the properties

mentioned above

Attractors can take di↵erent shapes, from a single point (fixed point attrac-

tors), to limit cycles or chaotic attractors. Additionally to attractors, which are

sometimes called sinks, one can also observe, in the phase portrait of a dynamical

system, repellers or sources. A repeller is the set of points A such that any trajec-

159



tory starting in A ends in A, but any trajectory starting in the neighbourhood of A
diverges, moving away from A. For example, local maxima are sinks or attractors

of the associated gradient system of some function f , that is the continuous system

whose update rule is a di↵erentiable equation following the gradient of f , ṡ = @f(s)
@s .

Local minima are repellers of this system as they are unstable fixed points. The

list of invariant sets also includes saddle structures, where one has repelling direc-

tions and attracting ones (see, for example, the detailed discussion in Section 4.4).

Figure 5.1 depicts some text book examples of attractors and repellers.

The set of all attractors, repellers or saddle structures (described by their nature

and relative position) that some dynamical system exhibits provides a qualitative

description of the global behaviour of the system. One approach to reasoning about

these dynamical system is by analysing or describing these invariant sets of points.

Additionally, information such as the basin of attraction associated with certain

attractors as well as the position of the boundaries between such basins of attraction

can provide information about the expected trajectory that a system can take given

a certain position in the state space.

Autonomous dynamical systems can find themselves also in a chaotic regime.

Some prerequisites for a system to be completely chaotic are:

– the system has to be sensitive to initial conditions; this property is sometimes

referred to as the butterfly e↵ect, when small changes in the initial conditions

results in completely di↵erent states as t goes to infinity.

– the system has to show topological mixing ; a system exhibits topological mix-

ing if there is a point s[0] 2 S such that the trajectory starting in s0 is dense.

Additionally, the same property is described by saying that for any two sets

U ,V ⇢ S there exists a t 2 T such that R(U , t)\V 6= ;. The two definitions

are not equivalent. Informally, topological mixing ensures that starting at

most points s[0] we explore the whole phase space.

Going one step further, one typical assumption that can be made for dynamical

system is that the evolution rule R is parametrized by some vector of values ✓ 2 ⇥.

This is specifically relevant for recurrent networks where we will identify the state

space with the possible set of values of the hidden state, and the evolution rule

(or discrete map) with the update rules of the recurrent network. As such, the

dynamical system that a recurrent network could represent is always parametrized

by the weights of the model.
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(a) Fixed point
attractor (sink)

(b) Repeller,
unstable fixed
point (source)

(c) Limit cycle attractor (Van der Pol
equation)

(d) Strange attractor (Lorenz attractor)

Figure 5.1: Illustration of a fixed point attractor in (a), a repeller in (b), a limit cycle attractor
(given by the Van der Pol equation) in (c) and a strange or chaotic attractor in (d), named the
Lorenz attractor. In green we show the attracting set, while with dashed blue lines we show
trajectories that point towards the attracting set in (a), (c) and (d) or away from the repelling
set in (c).
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For such systems one can rely on a bifurcation diagram to qualitatively under-

stand how changing the parameter vector ✓ a↵ects the behaviour of the model. Let

us consider a classical example, the logistic map, to describe a bifurcation diagram.

The logistic map is a dynamical system whose state space and parameter space

are both given by the set of real numbers R. The evolution rule is given by:

s[t] = ⇢(s[t�1]) = ✓s[t�1](1� s[t�1]) (5.1)

This system was popularized by biologist Robert May(May, 1976) as a discrete

system to describe demographic growth. Figure 5.2 shows the bifurcation map

corresponding to this system. Of particular interest are the values of the parameter

✓ for which the types (or number) of attractors (or other invariant set) of the system

changes as we move on one side of this value.

Specifically, we can see in the plot that before the value ✓ ⇡ 2.9 the system

exhibits a single point attractor. As we change the value of ✓ the position of this

single point attractor changes smoothly, however, topologically, the phase portrait

of the system remains the same. After some critical value of ✓ close to 2.9 we sud-

denly have a 2-state periodic attractor instead of our original single point attractor.

This is a topological di↵erent phase portrait. The critical value of ✓ that delimits

these two di↵erent phase portraits is called a bifurcation boundary.

Bifurcation boundaries describe qualitative changes in the behaviour of the

system. A particular such boundary is usually referred to as the edge of chaos.

The edge of chaos refers to that bifurcation boundary that leads into a chaotic

regime of the model.

5.3 Working memory

The concept of working memory (WM) refers to, following the definition from

Durstewitz et al. (2000), “the ability to transiently hold and manipulate goal-related

information to guide forthcoming actions.” To these properties we believe an im-

portant addition is stability. Or at least the information can be stabilizable on

demand, e.g. by rehearsal.
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Figure 5.2: Bifurcation map for the logistic map. Each vertical line of the figure corresponds to
the phase portrait for a certain value of the parameter ✓. We only plot the di↵erent attractors set
of the phase portrait. Note how for ✓ < 2.9 the system has a single point attractor. For ✓ > 2.9
the single point attractor converges into a 2-state periodic attractor, which will end up into a
chaotic regime when ✓ > 3.569.

Let us rephrase this definition in specific terms related to recurrent models.

Working memory describes the ability of the model to remember information not

by storing it in its weights, but rather in its hidden state. That is the model should

be able to memorize sequences that it has not seen during training if there are some

cue signals stating that such information will be useful further on. The memory

trace should only exist during the evaluation of the model on a particular input

sequence and not be part of the model.

The information stored has to be useful for the task to be solved and should

continuously influence or define the behaviour of the model on incoming inputs. In

principle, this information should be stored as long as needed, potentially for the

entire length of the sequence.

A large portion of the RNN oriented literature on working memory is concerned

with models that explain behavioural and neural observations from cognitive pro-

cessing experiments (reviews Durstewitz et al. (2000); Howard (2009)).

A common belief is that stable short-term memory for RNNs is realized through

attractors. Following this intuition a large number of attractors had been explored

in various contexts.
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The biologically oriented literature relies on point attractors (cell assemblies and

bistable neurons) and traveling waves (synfire chains) as discussed in Durstewitz

et al. (2000). In theoretical physics, spatiotemporal attractors (or pattern forma-

tions in excitable media) are explored, with connections into computational neu-

roscience and robotics via neural field theories of cortical representation (Schöner

et al., 1995; Freeman, 2007a,b). Coupled oscillators, that can be connected to at-

tractors in spiking neural networks, are also thoroughly studied, see, for example,

Radicchi and Meyer-Ortmanns (2006).

Chaotic attractors have been investigated as information representing neural

mechanism in Yao and Freeman (1990) and Babloyantz and Lourenço (1994). Such

models of memory o↵er a rich structure (due to the complexity of the chaotic

attractor) and the possibility to stabilize or address sub-lobes as representational

units (Stollenwerk and Pasemann, 1996; Tsuda, 2001).

One fundamental flaw of the attractor view of working memory is that, by

definition, attractors keep the system trajectory confined in their support (that is

the model can not leave the set of points defining the attracting set). Cognitive

dynamics do not seem to have this property. We can forget information, for ex-

ample, which would be equivalent with leaving this support set of the attractor

representing the stored information.

An important challenge for this view, is therefore, explaining how these attrac-

tors can be left. Many possible answers had been proposed. One provided solution

is that of neural noise which can kick the trajectory out of some attractor. This

solution is, however, unsatisfactory. Noise can not be specific, and forgetting in-

formation does not seem a random process. We need a more controlled (and input

driven) mechanism to leave these attractors.

If we allow ourselves to move away from the standard definition of an attractor,

attractor-like phenomena have been considered to realise memory. Such phenom-

ena usually emerges in high-dimensional nonlinear dynamics: saddle point dynam-

ics (Rabinovich et al., 2008; Sussillo and Barak, 2013); attractor relics (or attractor

ruins) where classical attractors in a fast-timescale subsystem are destroyed by a

slow-timescale saturation dynamics (Gros, 2009); transient attractors defined by

transient volume contractions of a flow (Jaeger, 1995); unstable attractors, which

are classical attractors that appear in certain spiking neural networks and can be

left under the impact of arbitrarily small noise because they are surrounded arbi-
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Input Units

Reservoir

Output units

h

yu

WM units
m

Figure 5.3: Diagram of the WM model. Dashed connections are trained, the others are left
untouched. Note that the main di↵erence to a standard echo state network is the presence of mem-
ory units. These units di↵erentiate themselves from output units by having trainable connections
among themselves. Also in our setup the output units do not have feedback connections.

trarily closely by basins of other attractors (Timme et al., 2002); high-dimensional

attractors (initially named partial attractors) which govern only a subset of the

dimensions of a high-dimensional phase space (Maass et al., 2007); attractor land-

scapes shaped by a control parameter (input) describe dynamics of a system which

lead to the appearance and disappearance of attractors due to incessant bifurcations

(Negrello and Pasemann, 2008).

This is only a subset of all the di↵erent proposed mechanism for working mem-

ory. Biological brains might also end up using several of these phenomena simul-

taneously.

None of the above mentioned methods seem to address all the properties that we

would expect from working memory. In what follows we will start by first providing

a specific structure and learning rule that results in echo state models that can

exhibit memory. This will serve as a proof of concept that while the mechanism

behind this behaviour is not clear, the desired behaviour can be obtained.
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5.4 Echo state networks with working memory

In this section we present a working memory model based on an ESN which

uses a dynamical mechanism related to point attractors for storing information. It

is able to simultaneously store information, use the stored information to modulate

further storing, detect patterns in the input that trigger memory content switches,

and perform input classification. For a refresher on the echo state network model,

please see Section 2.3.6. The ESN refers to a recurrent network for which we learn

only the output weights and carefully sample the input and recurrent weights.

5.4.1 Model

Our model is obtained by adding a set of special output units to an otherwise

standard ESN. We called these unitsWM-units, and they di↵er from normal output

units by having trainable connections from one to another or to themselves, as in

Figure 5.3. In our setup we only allow feedback connections from the WM-units

to the reservoir 1 but not from the other, regular output units. Another di↵erence

between WM-units and output units is that the former are binary-state neurons

which can store memory bits. To achieve this behaviour we use a sharp threshold

function �(mem) as the activation function of these units:

�(mem)(x) =

(
�0.5 x  0.

+0.5 x > 0.
(5.2)

The network is described by Equations (5.3), (5.4) and (5.5). Note the addition

of the WM-units m, as well as the feedback connections from the memory units

W(feedback). Compared to a standard RNN, we also have direct connections from

the input to the output units or memory units and connections between the memory

units. For clarity in notation these connections where folded in to the matrixW(out)

and W(mem) respectively. We also do not use biases (we do, however, force one of

the input units to have a constant negative value), and rely on the tanh activation

function. The only learnt weights of the model are W(mem) and W(out).

h[n+1] = �(W(in)u[n+1] +W(rec)h[n] +W(feedback)m[n]) (5.3)

1. In the Reservoir Computing literature, the hidden state of a recurrent network is usually
refered to as a reservoir
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3
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1

CA . (5.5)

Training this model is similar to the standard training of ESNs. Because the

WM-units feed back into the reservoir, we need the value of the WM-units at time

t � 1 in order to compute the state of the reservoir h[t]. We use a teacher-forcing

approach of relying on the true targets on the WM-units to get the activations of

the reservoir for some input sequence.

There is one important observation to be made here. First of all, in order

to train the model we need targets for the WM-units. This means that their

meaning and behaviour is predefined and not learnt. We use hints that tell us

how the memory units should behave for some sequence. A similar approach is

used in Gulcehre and Bengio (2013). This model, therefore, can not be used on

some dataset for which we do not know what, when and for how long we need to

memorize some information. As such, the utility of the model is limited. However,

the model itself is interesting, because, putting aside the learning problem, it o↵ers

evidence that stable working memory can be obtained in recurrent networks. These

memory traces can, as we will show, continuously influence the ongoing processing,

keep the information stored for unbounded periods of time and the model can

learn to replace stored information when it receives di↵erent input cues. As such,

our model, exhibits all the pre-requisites we have enumerated in Section 5.3. An

analysis of the model provides intuitions about the internal mechanism that result

in this behaviour, a particular type of attractor-like phenomena to which we refer

as input-induced attractor.

Because of the sharp activation of the memory units we do not need to add noise

to the teacher signal 1 when we use it to compute the activation of the reservoir.

However, if we forego the sharp activation function, this form of regularization is

vital to get the memory units to be stable and not quickly diverge in the presence

1. When relying on a teacher-forcing strategy to train a model, we feedback through the
recurrent connections of a model the target behaviour of a unit instead of its actual value. This
target value is usually called the teacher signal.
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of noise or new input sequences.

To compute the output weightsW(out), the reservoir state vectors, together with

the activations of the input units are stored row-wise in a data collection matrix

G. If Y(target) is the target signal, then the output weights are computed using

linear regression as shown in Equation (5.6), where † stands for pseudo-inverse. A

similar process is done for learning the memory units W(mem), where the inverse

of the activation function is taken as being the identity.

W(out) = (G† · �(out)�1
(Y(target)))

T . (5.6)

An important condition to make the learning of output weights by regression

a well-defined procedure is the echo state property (ESP). This is a property of

the reservoir and the admitted input. Roughly stated, a reservoir has the ESP

with respect to a given admitted input range if for any infinite input sequence

the network states h[n] asymptotically forget the (arbitrary) initial state h[0] used

at startup time. Formal definitions of the ESP are given in Jaeger (2001), and

refined algebraic conditions are in Buehner and Young (2006); Manjunath and

Jaeger (2013). In practice, the ESP is usually ensured when the spectral radius of

the reservoir weight matrix W(rec) is set to a value below unity, but we emphasize

that this is neither a necessary nor a su�cient criterion (Jaeger, 2007b), in spite of

a folklore belief in the field that it is both. The value of 1 for the spectral radius is

sometimes also referred to as the edge of chaos, though going over a spectral radius

of 1 does not imply a chaotic regime.

Dependding on the task that needs to be solved, there are a few global param-

eters that need to be tuned for optimal learning, namely, global scalings of input

weights, reservoir weights, and output feedback weights. In the reservoir computing

field, the global scaling of the reservoir weights W(rec) is typically specified through

the spectral radius of this matrix. All these tunable parameters are explained in

more detail in Jaeger (2001).

At first sight, the strong couplings between WM-units through the trained

W(mem) might appear problematic for a clean 1 storing of memory items, because

in technical storage devices one does not usually desire dynamical interaction be-

tween stored items. However, we will demonstrate that such interactions can be

1. By clean we mean that there is no interference with the stored information due to the
ongoing processing of information of the model.
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Figure 5.4: A fragment example of the rich graphic script used as input. The image was scaled
for better visualization.

harnessed for realizing desirable processing functionalities which go beyond pure

storage and retrieval.

5.4.2 Experiments

Task. The task is to keep track of the number of opened curly brackets as the

system reads a rich graphic script input, one vertical pixel line per timestep. An

input sample is shown in Figure 5.4. The system is required to maintain a counter.

Any time a opened curly bracket appears at the input, the counter has to increment

by 1. When a closed curly bracket appears the counter needs to decrement by

1. The architecture is required to be able to count up to 6. The input data are

generated such that no overflow or underflow occurs. This task requires a persistent

memory, as the network must remember the number of brackets seen for unbounded

periods of time, but it also requires the ability to do the basic arithmetic operations

of adding and subtracting 1.

In addition to this, as a computational payload the network also has to predict

the next character. This functionality is trained into the normal output units.

We use the same number of output units as the number of possible characters

(excepting the curly bracket characters). Each output unit predicts how probable

it is that the corresponding character will follow in the input stream. In doing

this, the network will benefit from taking into account the current bracket level

(the number of unclosed brackets) since the conditional distribution of the next

character given the previous di↵ers across the bracketing levels. This additional

task is meant to demonstrate that the network is able to use the information stored

in the WM-units.

Data. We train the network in two stages. During the first stage only W(mem) is

computed. In this stage training sequences of only 10000 symbols are used. In the

second stage the weights W(out) to the output units are computed. For the second

stage we use sequences of 49000 characters. In both cases the input sequences are

generated in exactly the same way.
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For generating the sequences, characters are chosen randomly with a probability

of 70% from a set of 65 di↵erent ASCII symbols (letters in lower case, numbers

and other symbols typically used in text including other types of brackets), with

a probability of 15% an open curly bracket and with 15% a closed curly bracket.

The opening and closing curly brackets are inserted such that they form matching

pairs with a nesting level of up to 6. According to the nesting level i (which can

be between 0 and 6), a di↵erent Markov chain is used to sample from the other 65

characters. The Markov chain is defined such that if the current character has the

index j (a number between 1 and 65 ) then the next character will be j + i + 1

modulo 65 with probability 80% and with equal probability (0.3125%) any of the

other 64 characters.

The testing sequence is generated similarly. It has 35000 characters, picked now

with a probability of 94% from the same set of 65 ASCII characters, while curly

brackets are picked with a probability of only 6%. The same 7 Markov chains are

used to sample characters in the periods corresponding to the 7 bracket levels.

The symbols are transformed afterwards to images by printing them with a

randomly selected font from four di↵erent font sets (FreeMono, FreeMono Bold,

FreeMono Italic and FreeMono Bold Italic of Gimp 2.3.6). All fonts have a width

of 7 pixels and height of 12 pixels, where each pixel is a grayscale value between 0

and 1. Before printing, the character images are stretched randomly to a width of

6, 7 or 8 pixels. Salt-and-pepper noise with an amplitude of 0.1 is added. The final

image-per-symbol has a fixed height of 12 pixels and a varying width. The resulting

script video sequence is fed to the network one vertical line at a time step through

12 input units. The testing data are more challenging than the training data

in the sense that switches between curly bracket levels occur more rarely, which

means that the WM must maintain the current bracket level for longer periods.

More precisely, in our training sequence this period ranged between 0 to 248 cycle

updates, with a mean of 17.7, while in testing data the period ranges between 0 to

691 cycles with a mean of 96.8. Note that while the average amount of time spent

in a state during training is well within the reach of the innate, fading short term

memory of the reservoir (Jaeger, 2002), this is not the case for the testing data.

Architecture detail. The model used has 13 input units, 12 representing a line

of the data, while the last unit feeds a constant bias of -0.5. The input to reservoir

connections are sparse, 80% of them being 0. The rest are randomly chosen to be
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either -0.5 or 0.5 with equal probability. The reservoir has 1200 units with only

12000 non-zero connections. The non-zero weights are either -0.1540 or +0.1540

with equal probability. The reservoir weight matrix has a spectral radius of 0.5.

The activation function of the reservoir’s units is tanh. The number of units as

well as the spectral radius was chosen so as to maximize the performance of the

model. We remark that these values are a compromise between the requirements

of the di↵erent subprocesses that go on simultaneously in the network. The task

that the network is asked to solve requires the network to recognize characters,

to memorize the number of unclosed curly brackets and to be able to do basic

arithmetic operations.

Six WM-units are connected to the reservoir. The feedback weight matrix from

the WM-units units to the reservoir is dense, all weights being randomly picked to

be either -.4 or +.4. The value k of the counter is represented in the WM-units by

having the first k units at +0.5 while the rest are at -0.5. The value 0 means that

all WM-units are at -0.5. The network is able to represent the numbers 0, 1, 2, 3,

4, 5 and 6. The WM-units have the activation function described in equation 5.2.

In addition to this, 65 ordinary output units are connected to the reservoir, with no

feedback to the reservoir. Their value (as well as the target) is only defined at the

time step when the input switches between characters, at which points the target

is 0 everywhere except for the value corresponding to the next character which is

1.

Training. A teacher signal (target) for the 6 WM-units is generated for the train-

ing sequence, which represents the prescribed -0.5/0.5 switching as curly brackets

appear in the input. The target switches occur in the middle of the presentation

of a bracket character. The training is done by computing the output weights such

that the distance between the output and the target is minimized in the mean

square error sense. The algorithm used is the Wiener-Hopf method.

The same approach is used to train the output units. The only di↵erence is

that we only use the input and reservoir activations for the time steps where the

input switches from one character to another.

Results. We ran the experiment 30 times, each time with di↵erent randomly

generated training and testing sequences, and freshly randomly generated reservoir,

input and feedback weights.

We started by inspecting the performance of the WM-units. An appropriate
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measure of the performance of the memory performance is the number of mistakes

made. As a mistake we consider events where the WM-unit state is di↵erent from

the target. We do not check for mistakes during the presentation of a curly bracket

(i.e., we do not evaluate transient e↵ects within the timespan of a curly bracket).

Once a mistake is present, we count it and then correct the state of the network. To

do so, we only correct the WM-units state by externally forcing them for one time

step to the desired configuration; the feedback connections then will also correct the

reservoir’s state. We sorted the errors in false positives (when the network detects

a bracket character even though none is present in the input) and false negatives

(when the network fails to detect a bracket). Table 5.1 lists the error counts.

Type of Number Percentage Percentage of Percentage of
error of errors of curly characters time steps

brackets

false negatives 7.2± 6.5 0.34± 0.30% 0.02± 0.018% 0.003± 0.002%
false positives 59.8± 21.6 2.84± 1.02% 0.17± 0.061% 0.024± 0.008%

total 67.0± 22.9 3.18± 1.09% 0.19± 0.065% 0.027± 0.009%

Table 5.1: Number of erroneous WM states obtained by the ESN, averaged over 30 runs

At a closer inspection of the errors produced in the 30 runs, we found that

the network never changed the WM-units to an invalid (non-coding) state or by

increasing or decreasing the counter by more then one. This suggests that any

error is actually the result of misclassification of a character, and not by the other

subprocesses of WM-unit state management (adding/subtracting one or keeping a

certain value stable).

Following up on this observation, we further di↵erentiated the number of false

positives according to which character triggered the error. Table 5.2 shows these

results, which coincide with our intuition of when the recognition subtask might

fail.

Another question one might raise is if correcting only the WM-units state is

su�cient for correcting the state of the network. If this were not the case we would

expect several errors to occur in rapid succession in a short timespan (during the

same character presentation or over two consecutive characters). Such errors would

also suggest instability of WM-unit locking. But such scenarios never happened in

any of the 30 runs.
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Character Number of times Number of times
(number of characters in the counter increased the counter decreased
the testing sequences)

“(” (499.5± 22.3) 21.5± 10.1 0± 0
“)” (502.4± 18.6) 0± 0 0.5± 0.2
“[” (496.2± 22.8) 5.8± 5.1 0± 0
“]” (501.3± 15.1) 0.05± 0.03 6.0± 5.4
“@” (492.7± 21.3) 25.1± 14.1 0.2± 0.1

other 0.05± 0.04 0.6± 0.5

Table 5.2: Trigger characters for false positives, averaged over 30 runs

We also measured the average absolute value of the computed Wmem weights,

i.e. the weights leading to the WM-units (Table 5.3). Their modest size is indicative

of a robust generalization, which indeed was observed, since the testing data were

more challenging than the training data.

considered weights average absolute value

input to WM-units weights 0.2327± 0.1813
reservoir to WM-units weights 0.0667± 0.0591
WM-units to WM-units weights 0.5825± 0.5627

Table 5.3: Average learned output weights of the ESN (over 30 runs).

The payload task our architecture had to solve was to predict the next input

character. In order to measuring the performance of the network on this task, we

considered as the predicted next character the most probable one (the one that

corresponded to the output unit with the maximal score). The performance is

quantified by simply counting the number of erroneous predictions. Note that the

output units do not feed back to the reservoir and therefore a bad prediction will

not a↵ect any of the following predictions.

At any character switching step in between curly brackets, the next character k

is selected according to a distribution that puts 80% weight on a single character.

What we ask the network to do is to learn 65 such peaked conditional next-character

distributions for each bracket level, in total 455 di↵erent distributions. Assuming

that the network learns them perfectly, due to the deterministic approach of select-

ing the prediction of the next character, the network will always pick the character

that has 80% weight, yielding an error rate of 20%, which is the best performance
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that we can expect to achieve on this task.

The error rate that we found on average over the 30 runs was 24.83± 0.27 %.

To demonstrate the importance of the WM-units in achieving this performance

level, we ran the same experiments with a ESN that had no WM-units but was

otherwise set up similarly. What we expect to happen is that the network will not

to able to distinguish between bracket levels anymore. Assuming that the current

character is j, the network would learn in this case a distribution that gives a larger,

almost equal, probability to j + 1 modulo 65, j + 2 modulo 65, .., j + 7 modulo 65

(the most probable characters for the di↵erent bracket levels), and much smaller

equal probability to all other characters. This implies that on average across the

di↵erent bracketing levels (which cannot now be memorized for longer time spans)

the network is likely to give wrong predictions in 20 + (6/7) * 80 ⇡ 80.5% of the

cases. We found an error rate of 83.75± 0.11 % in this condition, close to what we

expected.

5.4.3 Analysing the model

In the light of the discussion carried out in Section 5.3, one question that we

need to address is what is the underlying dynamical mechanism that provides this

working memory behaviour that we were able to simulate with this model.

First of all, we make the observation that the memory is stable 1. As long as no

curly bracket appears in the input, the model preserves the current bracket level

reliably for very large amounts of time. This suggest some form of attractor-like

behaviour.

There are some di�culties with this claim, as attractors are rigorously defined

only for autonomous systems. It was previously suggested in Bengio et al. (1994),

for example, that one can regard the input as bounded noise, which allows a

straightforward extension of the notion. This is not a perfect solution, as dis-

cussed previously, as the input is highly structured and the model is trained to

respond to it. In Pascanu and Jaeger (2011) we attempt to provide a definition of

pseudo-attractors, called �-attractors, for input driven dynamical systems (which

1. By stable we mean that the model can remember the stored information for what seems
very long periods of time, longer than what a standard model can do. Unfortunately there is
no theoretical quantification of what stable means in this case and we rely only on empirical
evidence.
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we refer to as �-systems). For now let us consider simpler approach of simply

ignoring the input and assume it is just bounded noise.

If the WM-units seem locked in an attractor state, not the same can be said

about the rest of the network. The hidden units of the model, or at least a subset

of them, seem to be free. These units are used to solve the payload task. Because

there is a strong connection between the behaviour of the model and the number

of open brackets, one might be tempted to fold the current behaviour into the

attractor. This means that the current behaviour is confined to the support of the

corresponding attractor and hence the whole model is locked into this attractor. For

this to be true, the attractor itself has to be fairly complex. However, preliminary

experimentation showed that the payload task can be independent of the memory

content, and the number of open brackets, in such a situation, does not influence

the performance on the payload task. This clearly suggests that at least some of

the hidden units are not constrained by the attractor representing the number of

open brackets. If we negate this claim, then the di↵erent attractors corresponding

to di↵erent brackets levels would have to share some of their support set, which

contradicts the definition of an attractor.

This suggests that the kind of attractor-behaviour that we observe is similar

to the one reported by Maass et al. (2007), namely a form of high-dimensional

attractor or partial attractor.

Another important trait of the trained model is the switching mechanism be-

tween di↵erent attractor states. This does not happen randomly, but rather when

specific patterns appear in the input. This suggests that the input, for these at-

tractors, is not equivalent to noise.

Figure 5.5 looks at the role of the input into the behaviour of the model. The

plot was obtained as follows:

– We ran the WM model from the previous section 7 times for approximately

45,000 network updates, each time with the memory units clamped in one

of the 7 settings coding for one bracketing level; the driving input was in

each case generated from an input character sequence whose Markov chain

properties were the same as used in the previous section, not containing curly

brackets;

– the obtained 7 sets of reservoir states and input vectors were concatenated

and the first principal components (PCs) of the reservoir states and inputs
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Figure 5.5: Visualization of the memory states of the WM model. The first PC of input signals
is plotted against the first two PCs of reservoir states, for the 7 WM unit configurations described
in the previous section. Di↵erent colors correspond to di↵erent WM configurations. Projections
of the reservoir state PCs are shown in darker shading on the ground plane. 6000 points are
plotted per attractor. Notice that the value ranges do no longer correspond to the (�1, 1) range
of tanh reservoirs because we display projections on the PCs. Picture best seen in color. For
detail compare text.
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were computed;

– separately for each of the 7 datasets, the first PC of the inputs was plotted

against the first two PCs of the reservoir states.

One sees that even in only the first two reservoir PCs, the reservoir state sets

corresponding to the di↵erent memory configurations become very well separated.

This suggest that additionally to have only part of the system locked in an attractor-

like state, these states seem to be stable under most inputs, with the exception

of the learnt switching patterns, which allow, within one step, for the model to

leave the basin of attraction of the current attractor. We do not have a proper

mathematical understanding of this behaviour. In Pascanu and Jaeger (2011) we

do, however, provide a formalization of these observations. Specifically we define

a input-driven system called �-system, and define, for these systems, �-attractors

which have all the properties that we see empirically in our experimentations.

Further work is needed to understand such phenomena. For example, one would

need better mathematical tools that would enable a deeper understanding of such

behaviour. A more in depth comparison of �-attractors with other similar observed

phenomena, and, if possible, a common framework that describes all these di↵erent

phenomena would also be useful.

For practical applications it would be useful to understand when these attractors

can manifest themselves (what properties of the parameters are required for such

phenomena to be possible). How can we learn them? What is the capacity of

these attractors as a function of the model size? Can they only represent discrete

information? Most of these questions we leave for future work.

5.5 Learning: The exploding and vanishing

gradients problem

Ideally we want to be able to train models that exhibit working memory with

out relying on hints. One way of analysing the ESN model with WM-units is

to consider the WM-units as hidden units. We can construct the corresponding

recurrent weight matrix that includes the feedback connections from the WM-units

to the reservoir and the weights among the WM-units, and transform the model
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into a classical recurrent neural network. The question is now: Can we learn this

model by stochastic gradient descent from initial small weights?

The final trained network can not have the echo state property, as it exhibits

several attractor-like phenomena. The phase portrait of the dynamical system 1

associated to this recurrent network has to be rich 2. Therefore, learning should

be able to move a model from small initial weights to one with rich dynamical

behaviour. It is to be expected (say if the largest singular value of the recurrent

weight matrix is smaller than unity) that the initial model has the echo state

property and hence its phase portrait has a single point attractor at the origin.

Even if this is not the case, is hard to image that the topology of the phase portrait

of the freshly initialized model is, by chance, the same as the one of the trained

model. This means that, during learning, the model has to traverse bifurcation

boundaries and to move through the phase space of a behaviourally rich model.

This implies that it is likely for learning to face both the exploding gradient and

vanishing gradient problems.

Let us further discuss these two problems and analyze how learning might be

able to deal with them. In this section of the chapter we will make use of the follow-

ing specific parametrization of a recurrent neural model to facilitate our analysis 3:

h[t] = W(rec)�(h[t�1]) +W(in)u[t] + b (5.7)

Let us re-write the gradients of a recurrent neural network in order to better

highlight the exploding or vanishing gradients problem:

@L
@✓

=
X

1tT

@L[t]

@✓
(5.8)

@L[t]

@✓
=
X

1kt

✓
@L[t]

@h[t]

@h[t]

@h[k]

@+h[k]

@✓

◆
(5.9)

1. We can assign an autonomous dynamical system to a recurrent network by ignoring the
input and regard it as bounded noise. While this is not ideal, it does provide some intuition of
how the model behaves.

2. We refer to a phase portrait as being rich if there is more than one attractor
3. The more widely known formulation, also used in other sections of this work, is h[t] =

�(W(rec)h[t�1] +W(in)u[t] + b). Both formulations behave the same (e.g. by redefining L[t] :=
L[t](�(h[t]))). We chose Equation (5.7) for convenience.
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@h[t]

@h[k]
=
Y

t�i>k

@h[i]

@h[i�1]

=
Y

t�i>k

W(rec)T diag(�0(h[i�1])) (5.10)

These equations are obtained by writing the gradients in a sum-of-products

form. The derivative
@+

h[k]

@✓ refers to the “immediate” partial derivative 1 of the

state h[k] with respect to ✓, where h[k�1] is taken as a constant with respect to

✓. Specifically, considering Equation (5.9), the value of any row i of the matrix

(
@+

h[k]

@W(rec) ) is just �(h[k�1]). Equation (5.10) also provides the form of Jacobian

matrix
@h[i]

@h[i�1]
for the standard parametrization of a recurrent neural network, where

diag converts a vector into a diagonal matrix, and �0 computes element-wise the

derivative of �.

Any gradient component
@L[t]

@✓ is also a sum (see Equation (5.9)), whose terms

we refer to as temporal contributions or temporal components. One can see that

each such temporal contribution
@L[t]

@h[t]

@h[t]

@h[k]

@+
h[k]

@✓ measures how ✓ at step k a↵ects the

cost at step t > k. The factors
@h[t]

@h[k]
(Equation (5.10)) transport the error “in time”

from step t back to step k. We further loosely distinguish between long term and

short term contributions, where long term refers to components for which k ⌧ t

and short term to everything else.

As introduced in Bengio et al. (1994), the exploding gradient problem refers to

the large increase in the norm of the gradient during training. Such events are

caused by the explosion of the long term components, which grow exponentially

then short term ones.

The vanishing gradients problem refers to the opposite behaviour, when long

term components go exponentially fast to norm 0, making it impossible for the

model to learn correlation between temporally distant events.

5.5.1 The mechanics

To understand this phenomenon we need to look at the form of each temporal

component of the gradient, and in particular at the factors
@h[t]

@h[k]
(see equation

(5.10)) that take the form of a product of l Jacobian matrices, with l = t � k.

Intuitively, these products can grow exponentially fast with l (in some direction

v), leading to the explosion of long term components when l is large. Because

1. We use “immediate” partial derivatives in order to avoid confusion, though one can use
the concept of total derivative and the proper meaning of partial derivative to express the same
property.
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the gradient is just a sum of these components, it follows that it should also grow

exponentially fast following the long term component with k = 0 (for which l = t).

If all the matrices involved in this product have, on the other hand, the largest

eigenvalue smaller than 1, then their product will have the opposite e↵ect. It will

shrink exponentially fast along any direction.

5.5.2 Linear model

Let us consider the term gT
[k] =

@L[t]

@h[t]

@h[t]

@h[k]

@+
h[k]

@✓ for the linear version of the

parametrization in equation (5.7) (i.e. set � to the identity function) and assume

t goes to infinity. We have that:

@h[t]

@h[k]
=
⇣
W(rec)T

⌘l
(5.11)

By employing the same approach as the power iteration method we can show

that, given certain conditions,
@L[t]

@h[t]

⇣
W(rec)T

⌘l
grows exponentially.

Proof. Let W(rec) have the eigenvalues �[1], ..,�[n] with |�[1]| > |�[2]| > .. > |�[n]|
and the corresponding eigenvectors e[1], e[2], .., e[n] which form a vector basis. We

can now write the row vector
@L[t]

@h[t]
in terms of this basis:

@L[t]

@h[t]
=

NX

i=1

c[i]e
T
[i]

If j is the smallest index for which c[j] 6= 0, using the fact that

eT[i]

⇣
W(rec)T

⌘l
= �l[i]e

T
[i],

we have that as l goes to infinity the following approximation becomes more exact:

@L[t]

@h[t]

@h[t]

@h[k]
= c[j]�

l
[j]e

T
[j] + �l[j]

nX

i=j+1

c[i]
�l[i]
�l[j]

eT[i] ⇡ c[j]�
l
[j]e

T
[j]. (5.12)

We used the fact that
����[i]/�[j]

��� < 1 for i > j, which means that

lim
l!1

����[i]/�[j]

���
l

= 0.
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If |�[j]| > 1, it follows that
@h[t]

@h[k]
grows exponentially fast with l, and it does so

along the direction e[j].

The proof assumes W(rec) is diagonalizable for simplicity, though using the Jor-

dan normal form of W(rec) one can extend this proof by considering not just the

eigenvector or largest eigenvalue but the whole subspace spanned by the eigenvec-

tors sharing the same (largest) eigenvalue.

This result provides a necessary condition for gradients to grow in the linear

case, namely that the spectral radius (the absolute value of the largest eigenvalue)

of W(rec) must be larger than 1. We will come back to this condition later on and

look at it in the nonlinear case as well.

If e[j] is not in the null space of
@+

h[k]

@✓ the entire temporal component grows

exponentially with l. The matrix
@+

h[k]

@✓ can be thought of as rotating the vector e[j]

and scaling it by some factor �[k], none of which should interact with the exponential

scaling as long as �[k] does not shrink exponentially fast (which is true for the linear

case).

This approach extends easily to the entire gradient. If we re-write it in terms

of the eigen-decomposition of W, we get:

@L[t]

@✓
=

nX

j=1

 
tX

i=k

c[j]�
t�k
[j] eT[j]

@+h[k]

@✓

!
(5.13)

We can now pick j and k such that c[j]eT[j]
@+

h[k]

@✓ does not have 0 norm, while

maximizing |�[j]|. If for the chosen j it holds that |�[j]| > 1 then �t�k
[j] c[j]eT[j]

@+
h[k]

@✓

will dominate the sum and because this term grows exponentially fast to infinity

with t, the same will happen to the sum.

5.5.3 Nonlinear model

To generalize this result to the nonlinear case, we define the concept of expand-

ing and non-expanding matrices for some direction v. We say that the Jacobian

matrix
@h[i]

@h[i�1]
expands along a vector v by ↵ > 1 if the following inequality holds.

8u,
����u

T @h[i]

@h[i�1]

v

���� > ↵|uTv| (5.14)
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Intuitively we need two kinds of su�cient properties to hold for the product of

Jacobian matrices to expand exponentially fast in some direction v. One is that

the product of these conditions expands exponentially with t, e.g., it would be

achieved if as t!1 the number of expanding Jacobian matrices
@h[i]

@h[i�1]
increases,

the number of non-expanding ones remains finite. The second property is that

multiplying by
@h[i]

@h[i�1]
does not kill o↵ these exponentially large increases.

We show this by constructing the set P of matrices that are non-expanding,

and considering a lower bound � > 0 on how much these matrices shrink a vector

in the direction v, condition formalized in the next inequality:

8u,
����u

T @h[i]

@h[i�1]

v

���� > �|uTv|, i↵
@h[i]

@h[i�1]

2 P (5.15)

This means that if ↵ is the least amount by which any matrix
@h[i]

@h[i�1]
62 P

expands ,
@h[t]

@h[k]
should expand roughly by �|P |↵t�|P |. If the cardinality of P is

bounded as t grows, it means this product grows exponentially fast with t� |P |.
It is worth mentioning that ↵ is bounded by the largest singular value of each

matrix
@h[i]

@h[i�1]
(which is easy to see as

��� @h[i]

@h[i�1]
v
��� 

��� @h[i]

@h[i�1]

��� kvk). If we consider

the parametrization in equation (5.7), this largest singular value is in its turn

bounded by the product of the largest singular values ⇢
W

(rec) of W(rec) and ⇢�0

of diag(�0(h[i�1])). We know that ⇢�0 < 1 for tanh and ⇢�0 < 1/4 for the sigmoid

function, and hence we recover a necessary condition for the gradients to explode,

namely that ⇢
W

(rec) > 1 (with the tighter version for the sigmoid, ⇢
W

(rec) > 4).

It is also su�cient for the following two equations, namely equations (5.16) and

(5.17), to hold, where the first equation implies that our chosen direction v is not

in the null space of
@+

h[k]

@✓ , while the second equation writes the vector
@L[t]

@h[t]
in a

orthonormal vector basis v[1], . . . ,v[N ], where v[1] = v and c(loss)[i] 2 R.

8u 2 RN , |uT @
+h[k]

@✓
v| � �[k]|uTv|, �[k] > 0 (5.16)

@L[t]

@h[t]
=

NX

j=1

c(loss)[j] vT
[j], c

(loss)
[1] 6= 0. (5.17)

Using these relations we can find a lower bound for |gT
[k]v|, where g[k] is the

temporal component corresponding to time step k. The equation below shows a

few steps of this derivation, where with out loss of generality we assigned the first
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element to P , but not the second one.

|gT
[k]v1| �

���
⇣

@L[t]

@h[t]

@h[t]

@h[k]

⌘
@+

h[k]

@✓ v[1]

���

� �[k]

��������

⇣
@L[t]

@h[t]

@h[t]

@h[k+1]

⌘
2Pz }| {

@h[k+1]

@h[k]
v[1]

��������

(5.18)

� �[k]�

��������

⇣
@L[t]

@h[t]

@h[t]

@h[k+2]

⌘
62Pz }| {

@h[k+2]

@h[k+1]

v[1]

��������

� �[k]�↵
���
⇣

@L[t]

@h[t]

@h[t]

@h[k+3]

⌘
@h[k+3]

@h[k+2]
v[1]

���
..

� �[k]�|P |↵l�|P |
���@L[t]

@h[t]
v[1]

���
� �[k]�|P |↵l�|P ||c(loss)[1] | � Ck↵l�|P |

Equation (5.18) ensures that long term components explode along v as long as

the coe�cient Ck (where Ck = �[k]�|P ||c(loss)[1] |) does not shrink faster to 0 then ↵l�|P |

grows to infinity. This is mostly a constraint on �[k] (since |P | is bounded from our

initial assumption), which is determined by
@+

h[k]

@✓ . For a classical parametrization

of the model the norm of the partial derivative
@+

h[k]

@✓ is determined by the norm of

the state and input at time k, where the constraint on the state roughly translates

into not having the state going towards its saturated state faster than ↵l�|P | (which

can be satisfied for tanh and sigmoid).

To get the vanishing gradients problem, one simply needs to invert the proof.

Instead of obtaining a necessary condition, we get a su�cient condition for the

gradient to explode, namely, for tanh, that the largest singular value of the recurrent

weight matrix is smaller than 1, or for sigmoid, smaller than 4.

5.5.4 The geometrical interpretation

Figure 5.6 shows how the norm of the stochastic gradient varies when training

a recurrent network on the MuseData dataset (polyphonic music prediction, see

Section 6.4) by SGD. The x-axis shows the number of stochastic gradient update

steps, while y-axis shows the gradient norm. The main conclusion one can draw

from it is that not only do the gradients explode, but at times, this happens very
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quickly.

Figure 5.6: The norm of the gradient versus SGD steps for a 100 hidden units recurrent network
when training on MuseData dataset. Top plot shows the norm for all steps taken until conver-
gence. Bottom plot zooms in on one such peak to show how abrupt the change in norm is (up to
65-fold increase of the norm with respect to its mean).

If the gradient grows so quickly (along some direction), then so should the

curvature. We can argue this is true in the single hidden unit case, where any

long term component can be approximated by C↵t�k for some constant C > 0 (as

suggested in Section 5.5.1). Its second derivative is C(t�k)↵t�k�1. Using the same

approach as before, for this case, we can see that when the gradient explodes so

does the curvature.

It is not trivial to extend this reasoning to the high dimensional nonlinear case

and we will not attempt to do this here, but we will use this observation to motivate

that such scenarios might be likely to happen in general.

If this intuition is true, then it justifies that second order methods for training

recurrent networks should do better (which seems to be true at least in the special

case of the Hessian Free algorithm (Martens and Sutskever, 2011; Sutskever et al.,

2011)).

The rapid growth in curvature also hints at a much simpler and cheaper solution

for the exploding gradients which avoids computing the Hessian matrix. From this

behaviour it follows that in the error landscape we likely have a wide valley for

which at least one of the sides is like a steep wall, and the network is either inside

the small slope area of the valley or on the edge of it, near where it can explode

(Figure 5.7). This comes from the fact that if the explosion is caused by having the

weights raised to some large power, then there is half of the space, when raising

this parameters to a large power would result in their norm to vanish, and then
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the other half where it would explode (for a single number think of having its value

below 1 and above it).

Figure 5.7: Illustrative example of a one-sided high curvature region in the error surface, where
the model can be either inside the valley or on the edge of one of its walls. The solid lines depicts
standard trajectories that gradient descent might follow. Using dashed arrow the diagram shows
what would happen if the gradients is rescaled to a fixed size when its norm is above a threshold.

As the power iteration method shows for the linear case, one would expect the

gradient to be aligned to the exploding direction v, and, by our intuition, so should

the curvature. This means that the steep wall of the valley is perpendicular to v

and the gradient. If we reach the wall and do a gradient descent step, we will jump

across the valley moving perpendicular to its walls, disrupting the learning process.

However we can do something di↵erent. In Figure 5.7, using dashed arrows, we

depict another trajectory that gradient descent could take if we rescale the gradient

to some fixed small step size when it explodes. This approach relies on the fact

that this norm correction moves the model into a lower curvature region where a

first order method is again suitable.

Note that the important addition in this scenario to the classical high curvature

valley, is that we assume that locally the shape is not Gaussian (or symmetric). By

our illustration we also do not mean to claim that this structure is the only possible

one. It serves as an intuition of a possible scenario that could happen. Instead of

this cli↵ shape, the error surface might just present a spike like structure 1. We

believe that the important observation (validated by our visualization of a really

small model) is the lack of symmetry, which can be exploited to avoid divergence

as we will show later.

1. This was suggested by Ilya Sutskever as a possible alternative
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5.5.5 Drawing similarities with Dynamical Systems

One can consider yet another perspective, namely that of dynamical systems.

Looking at dynamical systems theory for explaining the exploding gradient problem

has been done before in Doya (1993). Here, we will attempt to extend and improve

these previous observations.

For any parameter assignment ✓, depending on the initial state h[0], h[t] (for an

autonomous dynamical system) converges, under the repeated application of the

map ⇢ given by the update rule of the recurrent model, to one of several possible

di↵erent attractor states (e.g. point attractors). They describe the asymptotic

behaviour of the model. The state space is divided into basins of attraction, one

for each attractor. If the model is started in one basin of attraction it will converge

to the corresponding attractor.

Dynamical systems theory tells us that as ✓ changes slowly, the asymptotic

behaviour changes smoothly almost everywhere except for certain crucial points

where drastic changes occur (the new asymptotic behaviour is no more topologically

equivalent with the old one). These points are called bifurcation boundaries and

are caused by attractors that appear, disappear or change shape.

Specifically, if we consider a simple model defined by equation (5.19), where we

fix w to 5.0 and allow b to change, its bifurcation diagram is described by Figure 5.8.

This model reproduces an illustration from Doya (1993). Such diagrams convey an

abstract but complete picture of how the system can behave.

xt = �(wxt�1 + b) (5.19)

The x-axis corresponds to the value of the parameter b. The bold line follows

the movement of the final point attractor, h[1], as b changes. At b1 we have a

bifurcation boundary where a new attractor emerges (when b decreases from 1),

while at b2 we have another that results in the disappearance of one of the two

attractors. In the interval (b1, b2) we are in a rich regime, where there are two

attractors and the change in position of boundary between them, as we change b,

is traced out by a dashed line. The vector field (gray dashed arrows) describe the

evolution of the state h if the network is initialized in that region.

There are two types of events that could lead to a large change in h[t], when

t ! 1. One is crossing the boundary of a basin of attraction (depicted with
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Figure 5.8: Bifurcation diagram of a single hidden unit RNN (with fixed recurrent weight of 5.0
and adjustable bias). See text for more details.

unfilled circles), the other is crossing a bifurcation boundary (filled circles). For

large t, the �h[t] resulting from a change in b will be large even for very small

changes in b (as the system is attracted towards di↵erent attractors) which leads

to a large gradient.

Using these notions we can define a necessary condition for the gradients to

explode. The condition is for a boundary of a basin of attraction to be crossed

either by a change in h[0] or a change in ✓ (usually one only considers the change in

h[0], but changes in ✓ can move this border such that, e.g., we fall into a di↵erent

basin of attraction; we do not care if the border or the state moves). When crossing

a bifurcation boundary that leads to large change in h[t], by an abuse of language,

we say the boundary of the basin of attraction of some attractor was also crossed

implicitly (as for example if this attractor emerged, and the model landed in the

new basin of attraction or it disappeared).

In Doya (1993) only bifurcation boundaries are considered, but we would argue

this is a limited view. Crossing a bifurcation implies a global change, but locally

things could stay the same (i.e., after the bifurcation we can find ourselves in the

same basin of attraction). Also a change in ✓ means a change in the position of the

boundary between basins of attractions which could lead to crossing such a bound-
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⇢[1]

⇢[2]

⇢[3]

⇢[1]

⇢[2]

⇢[3]

�h[0]

�h[t]

h[t] h[t]

Figure 5.9: This diagram illustrates how the change in h[t], �h[t], under the successive maps
⇢[t] can be large for a small �h[0]. The blue vs red (left vs right) trajectories are generated by
the same maps ⇢[1], ⇢[2], .. for two di↵erent initial states.

ary, a scenario that is not considered by analyzing only bifurcations. Therefore

crossing a bifurcation boundary is neither a su�cient nor a necessary condition.

One interesting observation from the dynamical systems perspective with re-

spect to vanishing gradients is the following. If the factors
@h[t]

@h[k]
go to zero (for t�k

large), it means that h[t] does not depend on h[k] (if we change h[k] by some �, h[t]

stays the same). This translates into the model at h[t] being close to convergence

towards some attractor (which it would reach from anywhere in the neighbourhood

of h[k]). Therefore avoiding the vanishing gradients means staying close to the

boundaries between basins of attractions.

Input-driven dynamical systems

In order to be able to generalize the above mentioned observation to input driven

models, one intuitive approach is to fold the input into the map. We, therefore,

consider the maps ⇢[1], . . . ⇢[t], where we apply a di↵erent map ⇢[i] at each step

i. Intuitively, we require the same behaviour as before, where (at least in some

direction) the maps ⇢[1], . . . , ⇢[t] agree and change direction, for a small change in

✓ or h[0] (even for the same input sequence). Figure 5.9 illustrates this behaviour.

For the specific parametrization provided by equation (5.7) we can take the

analogy one step further by decomposing the maps ⇢[t] into a fixed map ⇢̂ and
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⇢[1]

⇢[2]

⇢̂

⇢̂

⇢̃[1]

⇢̃]2]

⇢̂

⇢̂

⇢[1]

⇢[2]

⇢̃[1]

⇢̃]2]

�h[0]

�h[t]h[t] h[t]

Figure 5.10: Illustrates how one can break apart the maps f[1], ..f[t] into a constant map ⇢̂ and
the maps ⇢̃[1], .., ⇢̃[t]. The dotted vertical line represents the boundary between basins of attraction,
and the straight dashed arrow the direction of the map ⇢̂ on each side of the boundary. This
diagram is an extension of Figure 5.9.

a time-varying one ⇢̃[t]. Then ⇢̂(h) = W(rec)�(h) corresponds to an input-less

recurrent network, while ⇢̃[t](h) = h + W(in)u[t] describes the e↵ect of the input.

This is depicted in in Figure 5.10. Since ⇢̃[t] changes with time, it can not be

analyzed using standard dynamical systems tools, but ⇢̂ can. This means that

when a boundary of a basins of attraction is crossed for ⇢̂, the state might move

towards a di↵erent attractor, which for large t can lead to a large discrepancy in

h[t]. If ⇢̃[t] is bounded, that it can interfere with this behaviour only when the

state is close to the boundary, but not when it is far away. Therefore studying the

asymptotic behaviour of ⇢̂ can provide some information about where such events

are likely to happen.

5.6 Existing solutions for the vanishing and

exploding gradients problem

Using an L1 or L2 penalty on the recurrent weights can help with exploding

gradients. Assuming weights are initialized to small values, the largest singular

value ⇢[1] of W(rec) is probably smaller than 1. The L1/L2 term can ensure that
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during training ⇢[1] stays smaller than 1, and in this regime gradients can not

explode (see sec. 5.5.1). This approach limits the model to a regime where any

information inserted in the model dies out exponentially fast (i.e. the model has the

echo state property). This prevents the model from learning generator networks,

nor can it exhibit long term memory traces.

Doya (1993) proposes to pre-program the model (to initialize the model in the

right regime) or to use teacher forcing. The first proposal assumes that if the

model exhibits from the beginning the same kind of asymptotic behaviour as the

one required by the target, then there is no need to cross a bifurcation boundary.

The downside is that one can not always know the required asymptotic behaviour,

and, even if it is known, it might not be trivial to initialize the model accordingly.

Also, such initialization does not prevent crossing the boundary between basins

of attraction which as we have shown can also lead to the exploding gradients

problem.

Teacher forcing refers to using targets for some or all hidden units. When

computing the state at time t, we use the targets at t�1 as the value of all the hidden
units in h[t�1] which have a target defined. It has been shown that in practice this

can reduce the chance that gradients explode, and even allow training generator

models or models that work with unbounded amounts of memory(Pascanu and

Jaeger, 2011; Doya and Yoshizawa, 1991). One important downside is that it

requires a target to be defined at every time step.

Hochreiter (1991); Hochreiter and Schmidhuber (1997) propose the LSTMmodel

to deal with the vanishing gradients problem. It relies on a special type of linear

unit with a self connection of value 1. The flow of information into and out of the

unit is guarded by learned input and output gates. There are several variations

of this basic structure. This solution does not address explicitly the exploding

gradients problem.

Martens and Sutskever (2011) use the Hessian-Free optimizer in conjunction

with structural damping. This approach was argued to be able to address the

vanishing gradients problem, though more detailed analysis is missing or a the-

oretical justification of this property. Presumably this method works because in

high dimensional spaces there is a high probability for long term components to be

orthogonal to short term ones. This would allow the Hessian to rescale these com-

ponents independently. In practice, one can not guarantee that the components
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are orthogonal, nor that the Hessian will scale them up. The method addresses

the exploding gradients to some degree as well, as it takes curvature into account.

Structural damping is an enhancement that forces the Jacobian matrices @h
t

@✓ to

have small norm, hence further helping with the exploding gradients problem. The

need for this extra term when solving the pathological problems might suggest that

second order derivatives do not always grow at same rate as first order ones.

Echo State Networks (Jaeger, 2001) avoid the exploding and vanishing gradients

problem by not learning W(rec) and W(in). They are sampled from hand crafted

distributions. Because the spectral radius of W(rec) is, by construction, smaller

than 1, information fed in to the model typically dies out exponentially fast. An

extension to the model is given by leaky integration units (Lukosevicius et al.,

2007), where

hk = ↵hk�1 + (1� ↵)�(W(rec)hk�1 +Winuk + b).

These units can be used to solve the standard benchmark proposed by Hochreiter

and Schmidhuber (1997) for learning long term dependencies (Jaeger, 2013).

We would make a final note about the approach proposed by Tomas Mikolov in

his PhD thesis (Mikolov, 2012)(and implicitly used in the state of the art results

on language modelling (Mikolov et al., 2011)). It involves clipping the gradient’s

temporal components element-wise (clipping an entry when it exceeds in absolute

value a fixed threshold). This is in the same spirit of the proposal in the subsequent

section, and a similar method had been independently used for LSTM (Graves,

2013).

5.7 Clipping the gradient norm

As suggested in Section 5.5.4, one mechanism to deal with the exploding gra-

dients problem is to rescale their norm whenever it goes over a threshold:

As just mentioned, this algorithm is similar to the one proposed by Tomas

Mikolov in his PhD thesis and used implicitly in his previous results for recurrent

networks and to the one used by Alex Graves for LSTM networks (Graves, 2013).

We only diverged from these original proposals in an attempt to provide a better
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Algorithm 5 Pseudo-code for norm clipping

ĝ @L
@✓

if kĝk � threshold then
ĝ threshold

kĝk ĝ
end if

theoretical justification (see Section 5.5.4; we also move in a descent direction for

the current mini-batch). From this perspective, we regard our work on this topic

as an investigation of why clipping works, where previously it had been treated as

a necessary implementational detail. In practice all variants of gradient clipping

behave similarly. According to our geometrical interpretation of the exploding gra-

dient, any small step that moves you back in the valley around the cli↵ like structure

that causes the explosion is fine. The step can be even in a non-descent direction,

because the several steps taken afterwards (before reaching the cli↵ structure again)

will result in more progress towards a minimum.

Note that we make the assumption that one gets to do several steps in the

normal curvature region near the cli↵. That is, we assume that there is a wide

valley near the cli↵.

The proposed clipping is simple and computationally e�cient, but it does how-

ever introduce an additional hyper-parameter, namely the threshold. One good

heuristic for setting this threshold is to look at statistics on the average norm over

a su�ciently large number of updates. In our experience values from half to ten

times this average can still yield convergence, though convergence speed can be

a↵ected.

5.8 Preserving norm by regularization

We opt to address the vanishing gradients problem using a regularization term

that represents a preference for parameter values such that back-propagated gradi-

ents neither increase or decrease in magnitude. Our intuition is that increasing the

norm of
@h[t]

@h[k]
means the error at time t is more sensitive to all inputs u[t], . . . ,u[k]

(
@h[t]

@h[k]
is a factor in

@L[t]

@u[k]
). In practice some of these inputs will be irrelevant for the

prediction at time t and will behave like noise that the network needs to learn to
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ignore. The network can not learn to ignore these irrelevant inputs unless there is

an error signal. These two issues can not be solved in parallel, and it seems natural

to expect that we might need to force the network to increase
��� @h[t]

@h[k]

��� at the ex-

pense of larger errors (caused by the irrelevant input entries) and then wait for it to

learn to ignore these input entries. This suggests that moving towards increasing

the norm of
@h[t]

@h[k]
can not be always done while following a descent direction of the

error L (which is, e.g., what a second order method would do), and a more natural

choice might be a regularization term.

The regularizer we propose prefers solutions for which the error preserves norm

as it travels back in time:

⌦ =
X

k

⌦[k] =
X

k

0

@

��� @L
@h[k+1]

@h[k+1]

@h[k]

���
��� @L
@h[k+1]

���
� 1

1

A

2

(5.20)

In order to be computationally e�cient, we only use the “immediate” partial

derivative of ⌦ with respect to W(rec) (we consider h[k] and
@L

@h[k+1]
as being constant

with respect to W(rec) when computing the derivative of ⌦[k]), as depicted in eq.

(5.21). This can be done e�ciently because we get the values of @L
@h[k]

from BPTT.

We use Theano to compute these gradients (Bergstra et al., 2010; Bastien et al.,

2012).

@+⌦
@W(rec) =

P
k

@+⌦[k]

@W(rec)

=
P

k

@+

0

BB@

�����
@L

@h[k+1]
W(rec)T

diag(�0(h[k]))
�����

2

�����
@L

@h[k+1]

�����

2 �1

1

CCA

2

@W(rec)

(5.21)

Note that our regularization term only forces the Jacobian matrices
@h[k+1]

@h[k]
to

preserve norm in the relevant direction of the error @L
@h[k+1]

, not for all directions

(we do not enforce that all eigenvalues are close to 1).

There are slight di↵erences between this approach and the one introduced in

Saxe et al. (2014), where orthonormal matrices are used for very deep linear MLPs.

While there is generical belief that orthonormal matrices can also be used to address

(at least to some degree) the vanishing gradients problem for recurrent networks,

this intuition might be misleading.

There is a crucial di↵erence between the two situations, feedforward models and
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recurrent ones, and this di↵erence is caused by the memory of RNNs. The amount

of memory that RNNs can exhibit is finite, and, because there exists an input at

each time step, the hidden state that stores this information acts as a bottleneck.

In order to perform well, RNNs need to be able to forget information which is not

relevant for the task, and this can only be done if there are directions of small

eigenvalues in the recurrent weight matrix. A model that preserves information in

all directions will have its memory corrupted by noise or irrelevant inputs, leading to

worse performance. As pointed above, however, the network first needs to get into

this regime of remembering everything, before it is able to learn what information

it can forget. We believe that enforcing to preserve norm in the direction of the

error is the least intrusive approach.

In Ganguli and Sompolinsky (2010), memory is analysed for linear recurrent

models where the input is assumed to be sparse. This work shows that orthogonal

matrices can be used to perform compressed sensing and exhibit long memory

traces when the input is sparse.

In general the input of a model is not sparse, or at least the sparsity of the

relevant signal is hidden behind the noise in the signal. Another observation is

that nonlinear dynamics are sometimes surprisingly di↵erent from those of linear

systems. In particular the memory analyzed in Ganguli and Sompolinsky (2010) is

based on transient dynamics of stable systems (that have a single point attractor at

the origin). In this chapter we argued that nonlinear dynamical system can provide

more interesting behaviour, attractor-like phenomena that can lead to unbounded

in time traces of memory, which transient dynamics can not. Examples are the

input-induced attractors that we witnessed for the ESN model with WM-units.

It is unclear that an orthogonality constraint would be useful for such dynamics.

Also, the ongoing processing that the network has to do in parallel with storing

information might not be realizable unless the model has directions in which it can

contract (eigenvalues that are smaller than unity). The intuition behind it is that

contraction can be used to forget or remove certain characteristics of the signal.

These operations are needed for processing the input. Finally, it is not clear that

for non-linear dynamics, non-orthonormal matrices are not useful to perform some

form of compressed sensing.

We believe these intuitions to suggest that restricting the nonlinear recurrent

model to an orthogonal recurrent weight matrix might severely reduce the types of
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behaviours it can exhibit. Further work is needed, however, in analysing such ap-

proaches and to understand how these intuitions from linear models, such as those

from Ganguli and Sompolinsky (2010), can be transfered to nonlinear recurrent

networks. A possible first step to pursue is, for example, to show whether orthog-

onal weight matrices can still lead to recurrent models that can mimic a Turing

machine.

The second observation is that we are using a soft constraint, which means

that by chance, the behaviour of the network can switch into a mode where ei-

ther the gradients vanish or they explode. A model employing this regularization

term should be well equipped to deal with the exploding gradients problem, for

example, by using the gradient norm clipping strategy discussed previously. From

the dynamical systems perspective we can see that preventing the vanishing gra-

dient problem implies that we are pushing the model towards the boundary of the

current basin of attraction (such that during the N steps it does not have time

to converge). Crossing the boundary of this attractor will cause the gradients to

explode.

5.9 Learning long term correlations

5.9.1 Pathological synthetic problems

As done in Martens and Sutskever (2011), we address some of the pathological

problems proposed by Hochreiter and Schmidhuber (1997) that require learning

long term correlations.

Overview: The Temporal Order problem

We consider the temporal order problem as the prototypical pathological prob-

lem, extending our results to the other proposed tasks afterwards. The input is a

long stream of discrete symbols not including A or B. At two points in time (in

the beginning and middle of the sequence) a symbol within {A,B} is emitted. The

task consists in classifying the order (either AA,AB,BA,BB) at the end of the

sequence.

195



Figure 5.11 shows the success rate of standard mini-batch stochastic gradi-

ent descent MSGD, MSGD-C (MSGD enhanced with our clipping strategy) and

MSGD-CR (MSGD with the clipping strategy and the regularization term) 1. It

was previously shown in Sutskever et al. (2013) that initialization of the model

plays an important role for training RNNs. We consider three di↵erent initializa-

tions. sigmoid is the most adversarial initialization, where we use a sigmoid unit

network where W(rec),W(in),W(out) ⇠ N (0, 0.01). basic tanh uses a tanh unit net-

work where W(rec),W(in),W(out) ⇠ N (0, 0.1). smart tanh also uses tanh units and

W(in),W(out) ⇠ N (0, 0.01). W(rec) is sparse (each unit has only 15 non-zero incom-

ing connections) with the spectral radius fixed to 0.95. In all cases b = b(out) = 0.

The graph shows the success rate over 5 di↵erent runs (with di↵erent random seeds)

for a 50 hidden unit model, where the x-axis contains the length of the sequence.

We use a constant learning rate of 0.01 with no momentum. When clipping the

gradients, we used a threshold of 1., and the regularization weight was fixed to 4.

A run is successful if the number of misclassified sequences was under 1% out of

10000 freshly random generated sequences. We allowed a maximum number of 5

million updates, and use mini-batches of 20 examples.

This task provides empirical evidence that exploding gradients are linked with

tasks that require long memory traces. As the length of the sequence increases,

using clipping becomes more important to achieve a better success rate. More

memory implies larger spectral radius, which leads to rich regimes where gradients

are likely to explode. MSGD-CR solves the task with a success rate of 100% for

sequences up to 250 steps (the maximal length used in Martens and Sutskever

(2011) was 200).

Furthermore, we can train a single model to deal with any sequence of length

50 up to 200 (by providing sequences of di↵erent random lengths in this interval for

di↵erent MSGD steps). We achieve a success rate of 100% over 5 seeds in this regime

as well (all runs had 0 misclassified sequences in a set of 10000 randomly generated

sequences of di↵erent lengths). We used an RNN of 50 tanh units initialized in

the basic tanh regime. The same trained model can address sequences of

length up to 5000 steps, lengths never seen during training. Specifically

the same model produced 0 misclassified sequences (out of 10000 sequences of same

1. When using just the regularization term, with out clipping, learning usually fails due to
exploding gradients.
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Figure 5.11: Rate of success for solving the temporal order problem versus sequence length for
di↵erent initializations. See text.
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length) for lengths of either 50, 100, 150, 200, 250, 500, 1000, 2000, 3000 and 5000.

This provides evidence that the model exhibits attractor-like phenomena and

relies on it to achieve this possibly unbounded stable memory, similar to the ESN

with WM-units discussed in Section 5.4. We take this as anecdotal evidence that

one can learn to exhibit stable memory with out relying on any kind of hints.

This contrasts the believe that recurrent networks mostly rely on transient

dynamics to gain memory (as for example ESN networks do in Jaeger (2013))

which do not permit generalization to longer sequences.

Overview: Other pathological tasks

SGD-CR was also able to solve (100% success on the lengths listed below, for all

but one task) other pathological problems proposed in Hochreiter and Schmidhuber

(1997), namely the addition problem, themultiplication problem, the 3-bit temporal

order problem, the random permutation problem and the noiseless memorization

problem in two variants (when the pattern needed to be memorized is 5 bits in

length and when it contains over 20 bits of information; see Martens and Sutskever

(2011)). For every task we used 5 di↵erent runs (with di↵erent random seeds).

For the first 4 problems we used a single model for lengths up to 200, while for the

noiseless memorization we used a di↵erent model for each sequence length (50, 100,

150 and 200). The hardest problems for which only two runs out of 5 succeeded

was the random permutation problem. For the addition and multiplication task

we observe successful generalization to sequences up to 500 steps (we notice an

increase in error with sequence length, though it stays below 1%). Note that for

the addition and multiplication problem a sequence is misclassified with the square

error is larger than .04. In most cases, these results outperforms Martens and

Sutskever (2011) in terms of success rate, they deal with longer sequences than in

Hochreiter and Schmidhuber (1997) and compared to Jaeger (2013) they generalize

to longer sequences.

5.9.2 Overview:Language modelling and polyphonic music

prediction

We address the task of polyphonic music prediction, using the datasets Piano-

midi.de, Nottingham and MuseData described in Boulanger-Lewandowski et al.
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Data set
Data
fold

MSGD MSGD+C MSGD+CR
SOTA for
RNN

SOTA

Piano-
midi.de

train 6.87 6.81 7.01 7.04 6.32

(nll) test 7.56 7.53 7.46 7.57 7.05

Nottingham train 3.67 3.21 2.95 N/A 1.81
(nll) test 3.80 3.48 3.36 3.23 2.31

MuseData train 8.25 6.54 6.43 6.47 5.20
(nll) test 7.11 7.00 6.97 6.99 5.60

Penn Tree-
bank

train 1.46 1.34 1.36 N/A N/A

1 step (bit-
s/char)

test 1.50 1.42 1.41 1.41 1.24

Penn Tree-
bank

train N/A 3.76 3.70 N/A N/A

5 steps (bit-
s/char)

test N/A 3.89 3.74 N/A N/A

Table 5.4: Results on polyphonic music prediction in negative log likelihood per time step and
natural language task in bits per character. Lower is better. Bold face shows state of the art for
RNN models.Note that SOTA stands for state of the art.

(2012) and language modelling at the character level on the Penn Treebank dataset

(Marcus et al., 1993). We also explore a modified version of the task, where we

require to predict the 5th character in the future (instead of the next). We assume

that for solving this modified task long term correlations are more important than

short term ones, and hence our regularization term should be more helpful.

The training and test scores for all natural problems are reported in Table 5.4

as well as state of the art for these tasks. We note that keeping the regularization

weight fixed (as for the previous tasks) seems to harm learning. One needs to

use a 1/t decreasing schedule for this term. We hypothesis that minimizing the

regularization term a↵ects the ability of the model to learn short term correlations

which are important for these tasks, though a more careful investigation is lacking.

These results suggest that clipping solves an optimization issue and does not act

as a regularizer, as both the training and test error improve in general. Results on

Penn Treebank achieved the same error as the ones in Mikolov et al. (2012), where

a di↵erent gradient clipping strategy was used, thus providing evidence that both

behave similarly. An LSTM model Graves (2013) with weight noise regularization
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and dynamic evaluation has the state of the art on this task. This model also

employs a gradient clipping strategy.

Similar observation can be done for the polyphonic music prediction task. Clip-

ping helps the optimization, resulting in lower training and testing error, while

adding the regularization term that prevents gradients to vanish helps to get only

better test error.

We need to make two remarks for the music results. The first one is that state

of the art for this task is held by an RNN-NADE model trained with Hessian-Free

Optimization. The structured output layer of this model might be the key of its

better performance. The second observation is that these results are taken from

our published paper Pascanu, Mikolov, and Bengio (2013). For the Nottingham

dataset, we explored, in our more recent paper Pascanu, Gulcehre, Cho, and Bengio

(2014), a more fine grid search for MSGD-C, resulting in a lower test and validation

error. However, to be fair with the results for MSGD-CR, we did not present this

result in table 5.4, rather the original one. The new result (together with others)

is introduced in detail in the next chapter of this thesis.

The state of the art results for RNN presented in table 5.4 are best results for

standard recurrent networks reported in the literature for the di↵erent datasets.

For Nottingham the result is taken from Pascanu, Gulcehre, Cho, and Bengio

(2014), while for MuseData and Piano-midi the result is from Bengio, Boulanger-

Lewandowski, and Pascanu (2013). In Pascanu, Gulcehre, Cho, and Bengio (2014)

we also explored deep recurrent networks for these task which performed better. We

did not considered these numbers for the state of the art results for RNN column.

5.9.3 Details of the experimental setup and results

For both training and testing sets of the pathological tasks, we always generate

data on the fly, i.e. every time we compute the test error we generate a new set

of 10000 sequences (the same when we need to do a MSGD step). Code for running

some of the experiments is provided at https://github.com/pascanur/training RNNs.

Temporal order

For the temporal order task the length of the sequence is given by T . We have a

fixed set of two symbols {A,B} and 4 distractor symbols {c, d, e, f}. The sequence
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entries are uniformly sampled from the distractor symbols everywhere except at

two random positions, the first position sampled from [ T
10
, 2T
10
], while the second

from [5T
10
, 6T
10
]. The task is to predict the order in which the non-distractor symbols

were provided, i.e. either {AA,AB,BA,BB}.
We used a grid search, where we tried the following values:

– number of hidden units N in 50,100

– learning rate lr in .01,.001

– threshold for gradient clipping µ in 6., 1., 4.

– regularization weight ↵ in 4., 2., 1., .5

– maximal number of updates 100k, 5G

We did not explore any decreasing scheme for the learning rate or for the regu-

larization weight. Momentum was also not used. The best hyper-parameters were

selected based on a few initial jobs with sequences of length 100 (i.e. we did not

explore every combination for all possible lengths and all seeds).

The final hyper-parameters used were:

– N = 50 (number hidden units)

– lr = 0.01 (learning rate)

– µ = 1. (threshold for gradient clipping)

– ↵ = 4. (regularization term)

– maximal number of updates 5G

Note that other combinations also lead to convergence (e.g. µ of 6 and smaller

learning rate of .001), though we find this combination to converge faster, and work

better in the regime of sequences of length 250 steps.

For generating the subplots of Figure 5.11, we explored the following lengths

T (i.e. we trained 5 models for each of this value, the 5 models using the same

random seeds):

– for sigmoid initialization, considered T values are: 16, 20, 22, 50, 100, 150,

200 ,250

– for basic tanh initialization, considered T values are : 16, 20, 35, 45, 50, 55,

65, 75, 100, 150, 200, 250

– for smart tanh initialization, considered T values are : 16, 20, 50, 100, 150,

200, 250

The number of updates required for convergence greatly depends on the length

of the sequence. Using both clipping and the regularization term, on average, for
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T = 200, the sigmoid initialization takes 685k updates, the basic tanh takes 476k

updates, and smart tanh 434k updates. In comparison, if we fix T = 20 and the

initialization to smart tanh, we have for MSGD 21k updates, for MSGD-C 11k

updates and for MSGD-CR 2k updates.

When training a single model for random lengths from 50 to 200 steps, we

decreased the regularization weight ↵ to 2. All values of µ seem to work, though

convergence seems faster with µ = 1. All 20 sequences in a training mini-batch had

the same length T uniformly sampled from [50, 200]. The test set was split into

500 mini-batches, each of a di↵erent length uniformly sampled from [50, 100]. Each

test evaluation implied generating a new set of such 500 mini-batches. For all tasks

where we considered varying length sequences, we stopped learning and considered

the run successful when no sequence was misclassified out of 10000 sequences of

varying length. We then evaluate the model on 10000 sequences of length 50,

10000 sequences of length 100, 10000 sequences of length 150 and 10000 sequences

of length 200. Additionally we explored T in {250, 500, 1000, 2000, 3000, 5000}. For
the temporal order problem in all cases 0 sequences were misclassified in each run.

Addition problem

For this task, the input consists of a sequence of random numbers, where two

random positions (one in the beginning and one in the middle of the sequence) are

marked. The model needs to predict the sum of the two random numbers after the

entire sequence was seen. For each generated sequence we sample its actual length

T 0 from [T, 11
10
T ], though for clarity we refer to T as the length of the sequence.

The position of the first marked number is sampled from [1, T
0

10
], while the second

position is sampled from [4T
0

10
, 5T

0

10
]. These positions i, j are marked in a di↵erent

input channel that is 0 everywhere except for the two sampled positions when it

is 1. The model needs to predict the sum of the random numbers found at the

sampled positions i, j divided by 2.

To address this problem we use a 50 hidden units model, using the basic tanh

initialization. We explored the learning rates {.01, .001} and ↵ 2 {.5, 1., 2.}. We

have tried µ 2 {6., 1.}. The final choice of hyper-parameters are lr = .01, ↵ = .5.

We did not notice any significant di↵erence in picking µ = 6 or µ = 1, though

clipping was required (i.e. µ = 1 fails). µ = 1. seems to result in slightly faster

convergence (on average 1.226G versus 1.299G updates).
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T 50 100 150 200 250 300 350 400 600
error .08% .01% .01% 0% 0% .02% .01% .04% .52%

Table 5.5: Addition task. Error as percentage of misclassified sequences out of 10000 for di↵erent
values of T for the same trained model.

T 50 100 150 200 250 300 350 400 600
error .55% .04% .04% .04% .08% .26% .28% .73% 2.11%

Table 5.6: Multiplication task. Error as percentage of misclassified sequences out of 10000 for
di↵erent values of T for the same trained model.

We directly explored training the model on sequences of varying length T be-

tween 50 and 200, following the same procedure as for the temporal order task.

A single model manages to handle (within the permitted 1% error) lengths of

50,100, 150, 200, 250, 300, 400 and even 600. In Table5.5 you can see how the

misclassification error behaves for di↵erent lengths for a trained model (one out of

the 5 random seeds used). The trained models for the other di↵erent random seeds

behave similarly.

Multiplication problem

This task is similar to the addition problem, just that the predicted value is

the product of the random numbers instead of the sum. We used the same hyper-

parameters as for the addition problem (with out validating them through a grid

search), and obtained very similar results (Table5.6 shows the results for one of

the 5 random seeds used; for the other seeds we see a similar behaviour). We

only explored the value of µ which seemed to reduce more the number of updates

required for convergence (1.728G updates for µ = 1 versus 3.418G updates for

µ = 6).

3-bit temporal order problem

This task is similar to the temporal order problem, except that we have 3

random positions, first one sampled from [ T
10
, 2T
10
], second one from [3T

10
, 4T
10
] and last

one from [6T
10
, 7T
10
].

As before, we explored directly training the model on sequences of varying

length. We explored the number of hidden units in {50, 100}, learning rate in
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T 50 100 150 200 250 300 350 400 600
error .0% .01% .0% .06% .01% 0% 2.75% 14.13% 24.81%

Table 5.7: 3-bit temporal order task. Error as percentage of misclassified sequences out of 10000
for di↵erent values of T for the same trained model.

T 50 100 150 200 250 300 350 400 600
error .04% .01% .02% .03% .02% 0% .03% .02% .04%

Table 5.8: Random permutation task. Error as percentage of misclassified sequences out of
10000 for di↵erent values of T for the same trained model.

{.01, .001} and µ 2 {1., 6.}. We explored ↵ 2 {2., 1.}. Best combination (with

regard to convergence speed) was lr = .01, µ = 1., ↵ = 2. We chose 100 hidden

units. Average number of updates to train was 569k. Table 5.7 describes a single

trained model, the other 4 trained model behave similarly.

Random permutation problem

For this problem we have a dictionary of 100 symbols. Except the first and

last position which have the same value sampled from {1, 2} the other entries are

randomly picked from [3, 100]. The task is to do next symbol prediction, though

the only predictable symbol is the last one (based on the first symbol seen).

We explored 50 and 100 hidden units, with a learning rate of either .01 and

.001. ↵ 2 {2., 1., .5} and µ 2 {6., 1.}. We run experiments only on varying length

sequences. The task proved harder to train. 2 out of 5 runs were successful for the

final chosen hyper-parameters: 100 hidden units, with a learning rate of .001 and

↵ = 1. and µ = 6. The error for di↵erent lengths are listed in Table5.8 for one of

the two successful run.

Noiseless memorization problem

For the noiseless memorization we are presented with a binary pattern of length

5, followed by T steps of constant value. After these T steps the model needs to

generate the pattern seen initially. We also consider the extension of this problem

from Martens and Sutskever (2011), where the pattern has length 10, and the

symbol set has cardinality 5 instead of 2.
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Task 50 steps 100 steps 150 steps 200 steps

Original task 0% 0% 0% 0%
Extended task 0.844% 0.724 % 0.75% 0.77%

Table 5.9: Noiseless memorization problem. Average (over the 5 seeds) percentage of misclas-
sified sequences out of 10000 for the di↵erent lengths considered and the two variations of the
task

All runs on varying length sequences failed, so we trained a di↵erent model for

the considered lengths (50, 100, 150, 200).

We explored ↵ 2 {1, 2}, learning rate in {.01, .001}, number of hidden units

in {50, 100} and µ 2 {1., 6.}. We explored hyper-parameters on the original task

(where the symbol set had cardinality 2). We chose to use ↵ = 1, learning rate

0.01, 100 hidden units and µ = 1 for faster convergence.

We manage a 100% success rate (i.e. all 5 runs had under 1% misclassified

sequences out of 10000) on these tasks for 5 di↵erent random seeds, though we

train 4 models for each of the 4 possible lengths (50, 100, 150, 200).

Polyphonic music prediction

We train our model, a sigmoid units RNN, on sequences of 200 steps. The

cut-o↵ coe�cient threshold is the same in all cases, namely 8 1.

In case of the Piano-midi.de dataset we use 300 hidden units and an initial

learning rate of 1.0. For all natural tasks we halved the learning rate every time

the error over an epoch increased instead of decreasing. For the regularized model

we used a initial value for regularization coe�cient ↵ of 0.5, where ↵ follows a 1
2t

schedule, i.e. ↵t =
1
2t (where t measures the number of epochs). We found that

keeping alpha constant as before results in worse performance for ↵ 2 {0.5, 1., 2.}.
Further more we speculate that for tasks where short term information is important

one needs to use a decreasing schedule for the regularization weight.

For the Nottingham dataset we used 400 hidden units, with an initial ↵ = 5.

that started decreasing with 1/max(1,t�10) after the first 10 epochs. µ was set to 8.

The learning rate was set to 1. 100 of the 400 hidden units where leaky integration

1. Note this value changes considerably if one takes the sum over the sequence length versus
the mean. Of course, to make taking the mean a consistent choice, all sequences used have to be
of the same length. We used the mean, or, stated di↵erently, we divided the cost by 200
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units (Bengio, Boulanger-Lewandowski, and Pascanu, 2013) with their leaky factor

randomly sampled from [0.02, 0.2].

For MuseData we used 400 units. The learning rate was also decreased to 0.5.

For the regularized model, the initial value for ↵ was 0.1, and ↵t = 1
2t . 100 of

the 400 hidden units where leaky integration units, as used in Bengio, Boulanger-

Lewandowski, and Pascanu (2013). Their leaky-integration factor was randomly

sampled in [0.02, 0.2].

We have explored number of hidden units in the range {200, 300, 400}, learning
rates of {2., 1., .5}, µ 2 {4, 8, 12} and ↵ 2 {1, 5, .5}. We tried keeping ↵ constant, or

start decreasing from epoch 0, epoch 10 or epoch 20. We use either 1
t or

1
2t schedule.

Not all hyper-parameters where explored on all tasks. Most of the hyper-parameter

selection was done on the Piano-midi.de task.

Language modelling

For the language modelling task we used a 500 sigmoidal hidden units model

with no biases (Mikolov et al., 2012). We use the normal distribution N (0, 0.1) to

sample the weights. The model is trained over sequences of 200 steps, where the

hidden state is carried over from one step to the next one.

We use a cut-o↵ threshold of 45 (though we do not rescale the cost based on

the sequence length for each step) in this case. For next character prediction we

have a learning rate of 0.01 when using clipping with no regularization term, 0.05

when we add the regularization term and 0.001 when we do not use clipping. When

predicting the 5th character in the future we use a learning rate of 0.05 with the

regularization term and 0.1 with out it.

Interestingly enough, the strategy for the regularization factor ↵ when solving

the next character prediction that performed best was to keep it constant to the

value .01. For the modified task a 1
t schedule again seem to perform better, and we

used an initial value for ↵ of 0.05 with ↵t = ↵ 1
1+ t

2800
, where t is the update index.

We have explored constant ↵ 2 {6, 1, 0.5, 0.01, 0.001} and 1

1+
max(0,t�t0)

�

schedule

with � 2 {2800, 500} and t0 in {0, 28108}. The number of hidden units was kept

constant to 500.
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5.10 Learning to memorize: discussion and

summary

In this chapter we looked at recurrent neural networks, a specific family of neural

models. Compared to their feedforward counterpart, recurrent networks exhibit

memory, which allows them to be as powerful as a Turing machine (Siegelmann

and Sontag, 1991). However, it is unclear if we can learn such rich behaviour, and,

even more fundamentally, what kind of intrinsic dynamical mechanisms could be

used to achieve it.

In the introduction of this chapter, we provide a brief introduction to work-

ing memory. We discussed what properties are “desirable” for memory, and why

obtaining this behaviour within a recurrent network can be advantageous.

In this chapter we presented two main results. The first one shows that a

recurrent network can exhibit working memory in a practical manner. This is done

using a modified ESN model, where we need to rely on hints and “teacher-forcing”

to learn this behaviour. Further analysis suggests that this memory is not obtained

via transient dynamics, but rather via attractor like phenomena.

We call this phenomena an input-induced attractor, and we believe it is, in

nature, similar to the previously reported high-dimensional attractors from Maass

et al. (2007). This attractors seems to be resilient to most input patterns except

specific patterns that are learnt, which lead to the model being “kicked” out of the

attracting state. We believe that this behaviour is not due to neural noise, but we

are actually dealing with a behaviour specific to input driven dynamical systems,

behaviour that still requires more rigorous investigation.

While this result is very encouraging, the use of hints during training reduces

its applicability. For most task of interest we do not know before hand what

information and when it needs to be stored (or deleted). If we want the model to

discover memory by simply learning from data, the result above suggests that we

need to be able to learn in rich dynamical regimes that can show many di↵erent

attractors and be riddled with bifurcations.

This observation guided our second main result presented in this chapter. If we

need to move through these rich regimes, it means that learning needs to be able

to address at least two issues specific to recurrent neural networks: the exploding

and vanishing gradients problem (Hochreiter, 1991; Bengio et al., 1994).
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We provide an intuitive geometrical explanation for one strategy to deal with the

exploding gradients problem, namely clipping the norm of the gradients. We argue

that such issues arise from cli↵-like structures in the error surface, and by clipping

the norm of the gradient, we force the model to stay in the valley surrounding

this cli↵. The valley is wide and well behaved, so, by this strategy, we get to take

several steps towards some minimum before we reach the cli↵-like structure again,

once we’ve clipped the gradients.

For the vanishing gradients problem, we propose a soft constraint that enforces

gradients not to loose norm as they “travel” back in time. Our choice is motivated

by the intuition that preserving gradient norm might lead to moving in a non-

descent direction. Memory is a finite quantity whose size is determined by the

hidden state size. Given that we have an input at each time step, the hidden layer

behaves like a bottleneck. For a potentially infinite input sequence, there will not

be enough memory to remember the entire input sequence.

A recurrent model needs to learn to memorize only the important bits, and

ignore information that is not relevant for the task (or sacrifice some of the infor-

mation in the input). We believe that doing so can only happen if there is an error

signal from this irrelevant inputs, therefore the model need first to try to remem-

ber everything (at the expense of larger errors) and then learn to forget irrelevant

inputs. A regularization term can address this through the regularization weight

which decides how important is for the constraint to be respected versus reducing

the loss of the task.

Using both these solutions, gradient norm clipping and the regularization term,

we obtain state of the art results on the pathological problems proposed by Hochre-

iter and Schmidhuber (1997). Specifically, for the temporal order task, we are able

to learn to solve the task with out any hints, and generalize to sequences that are

an order of magnitude longer than the ones seen during training. This suggests

that the trained model exhibits some sort of stable memory, probably similar to

the ESN network trained with hints.

We regard this observation as anecdotal evidence that such unbounded mem-

ory behaviour can be learnt by local optimization techniques, such as stochastic

gradient descent, provided that the task is properly set up (for example via this reg-

ularization term and the clipping strategy employed). This results, together with

the theoretical superiority of recurrent models versus feedforward ones, highlights
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the importance of recurrent network research.

Moving towards artificial intelligence, we believe that the di↵erent neural com-

ponents of this system will have to be equipped with working memory, and hence

recurrent connections. We argued in Chapter 3 that depth is a crucial components

to neural networks because it induces an exponential e�ciency in representations.

Recurrent connections are also such a crucial component, because they allows the

network to exhibit memory and move beyond simple mappings from input to out-

put. Context, at each time scale, can be crucial to better disambiguate the proper

next action of the agent.

Regarding the experiments carried out in this section, we regard them as just

an initial step. In particular, there are many intriguing extensions that need to be

explored.

For the ESN model that relies on hints, one important step forward is to show

its practicality on real world tasks. For language, or speech, additional temporal

information can be constructed that could be used as hints. For example, a charac-

ter level model could learn to keep track of which word it is in (or word class based

on some clustering), or which phrase is currently parsing (when such information

is available). For speech we could keep track of who is the current speaker (when

we have multiple speakers taking turns).

One other possible direction is to use the same strategy (the WM units trained

with teacher forcing) for normal recurrent networks to bootstrap learning. This

could be done, for example, when hints are available for only a small subset of the

training set.

The regularization term used for addressing the vanishing gradients problem

seemed to underperform on natural task that require both short term and long

term information. We believe that the constraint might force the model to ignore

short term information. Exploring possible solutions for this problem is another

future direction. One approach could be to simply split the model into two com-

ponents, one that is meant to address short term information, the other long term

information. Other direction is to explore more complex schedules for the regu-

larization term that allows the model ample time to focus on both the short term

information and long term one. Yet another possibility is to alter the structure

of the RNN to one that is more e�cient at encoding complex behaviours. More

complex optimizers can resolve saddle structures in the error surface, and allow for
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better optimization of the model.

Finally, a lot more work is needed to understand the mechanisms behind mem-

ory for recurrent networks. Such analysis can be very insightful in understanding

the di�culties we have with learning to exhibit memory and can suggest structural

changes to RNNs.
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6 Depth for recurrent
models

The previous chapter looked at some particular optimization issues surround-

ing recurrent models. We know that the ability of recurrent networks to exhibit

complex behaviour patterns is strongly connected to its ability to exploit context.

We looked at how an RNN can use long term context and specifically we dis-

cussed attractor-like phenomena that could be used to construct working memory

which would allow exploiting this long term context.

While learning is a crucial component, in this chapter we return to a di↵erent

fundamental question, namely that of e�ciency. In Chapter 3 we connected the

depth of a feedforward MLP with how e�ciently (for a fixed number of parameters)

this model can represent certain families of functions.

Given the rich behaviours that we expect from recurrent networks, it is natural

to ask whether some structural change of the model could make it more e�cient

at encoding complex behaviour. Following the intuitions in Chapter 3 we explore

here the concept of a deep recurrent network empirically, providing intuitive justi-

fications for the di↵erent proposed structural changes.

The content of this chapter is based on the paper Pascanu, Gulcehre, Cho, and

Bengio (2014) that I published with my co-authors at the International Conference

of Learning Representations (ICLR). In writing the chapter I borrowed figures and

paragraphs from this paper. Please see Section 1.1 for a detailed description of my

personal contribution to the paper.

6.1 Motivation

Deep learning is built around a hypothesis that a deep, hierarchical model

can be exponentially more e�cient at representing some functions than a shallow
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one (Bengio, 2009). A number of recent theoretical results support this hypoth-

esis (see, e.g., Le Roux and Bengio, 2010; Delalleau and Bengio, 2011; Montúfar

and Ay, 2011; Pascanu et al., 2014). Furthermore, there is a wealth of empirical

evidences supporting this hypothesis (see, e.g., Goodfellow et al., 2013; Krizhevsky

et al., 2012; Hinton et al., 2012). See also Chapter 3 for a detailed treatment of this

question. These findings make us suspect that the same argument should apply to

recurrent neural networks.
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Figure 6.1: A conventional recurrent neural network unfolded in time.

The depth is defined in the case of feedforward neural networks as having mul-

tiple nonlinear layers between input and output. Unfortunately this definition does

not apply trivially to a recurrent neural network because of its temporal structure.

For instance, any RNN when unfolded in time as in Figure 6.1 is deep, because

a computational path between the input at time k < t to the output at time t

crosses several nonlinear layers. However, if we considered the di↵erent computa-

tions carried out by a recurrent model, one can identify ways in which the model

is “shallow”. For example the computations carried out to obtain the new hidden

state, provided the previous one and the input is given by a shallow model. We

argue that depth is an ambiguous term for RNNs, and one needs to specify in which

sense the model is deep.

For example, Schmidhuber (1992); El Hihi and Bengio (1996) earlier proposed

one way of building a deep RNN by stacking multiple recurrent hidden states on

top of each other. This approach potentially allows the hidden state at each level

to operate at di↵erent timescale (see, e.g., Hermans and Schrauwen, 2013). This

shows that the model can be deep in a way that is orthogonal to being deep in time

(i.e. when unfolding the graph in time).

To understand what a deep recurrent network means, we first introduced a new

interpretation of a recurrent network. Based on this interpretation we can define

segments of the model that can be made deep.
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Figure 6.2: A view of an RNN under the operator-based framework: � and B are the plus and
predict operators, respectively.

6.2 Another Perspective: Neural Operators

In the operator-based framework, one first defines a set of operators of which

each is implemented by a multilayer perceptron. For instance, a plus operator

� may be defined as a function receiving two vectors u and h and returning the

summaryi 1 or history h0 of them:

h0 = h� u,

where we may constrain that the dimensionality of h and h0 are identical. Addi-

tionally, we can define another operator B which predicts the most likely output

symbol y given a summary h, such that

y = Bh

It is possible to define many other operators, but for now we stick to these two

operators which are su�cient to express standard RNNs as well as the modifications

we will later propose.

It is clear to see that the plus operator � and the predict operator B correspond

to the transition function and the output function in Equations (6.1)–(6.2) describ-

ing a recurrent model. Thus, at each step, an RNN can be thought as performing

the plus operator to update the hidden state given an input (h[t] = h[t�1]�u[t]) and

then the predict operator to compute the output (y[t] = Bh[t] = B(h[t�1] � u[t])).

See Figure 6.2 for the illustration of how an RNN can be understood from the

1. By summary we meant a summarization of all the previously seen inputs.
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operator-based framework.

h[t] = ⇢h(h[t�1],ut) (6.1)

y[t] = ⇢o(h[t]), (6.2)

where ⇢h and ⇢o are a state transition function and an output function, respectively.

Each function is parameterized by a set of parameters; W(rec), b and W(out), b(out).

Specifically, for a standard RNN, for example,

⇢h(h[t�1],u[t]) = �(W(rec)h[t�1] +W(in)u[t] + b)

The goal achieved by this operator view is that we assign semantics of all the

intermediary computations carried out by the recurrent model. These semantics

provide better means to reason about these intermediary quantities. Each operator

can be, potentially, parameterized as an MLP with one or more hidden layers, hence

a neural operator, since we cannot simply expect the operation will be linear with

respect to the input vector(s).

Another advantage of the operator view is that, by the semantics the operators

represent, they can provide us insight on how the constructed RNN can be regu-

larized. For instance, one may regularize the model such that the plus operator �
is commutative.

Note that this is di↵erent from (Mikolov et al., 2013) where the learned embed-

dings of words happened to be suitable for algebraic operators. The operator-based

framework proposed here is rather geared toward learning these operators directly.

6.3 Deep Operators

A close analysis of the computation carried out by an RNN (see Figure 6.3)

at each time step individually, shows that certain transitions (corresponding to

di↵erent neural operators) are not deep. They are only results of a linear projection

followed by an element-wise nonlinearity.
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Figure 6.3: A conventional RNN

It is clear that the hidden-to-hidden transition, given by the� operator, (h[t�1] !
h[t]), the B operator representing the hidden-to-output transition (h[t] ! y[t]) and

input-to-hidden transition (u[t] ! h[t]) are all shallow in the sense that there exists

no intermediate, nonlinear hidden layer.

We can now consider di↵erent types of depth of an RNN by considering those

transitions separately. We may make the hidden-to-hidden transition deeper by

having one or more intermediate nonlinear layers between two consecutive hidden

states (h[t�1] and h[t]). At the same time, the hidden-to-output function can be

made deeper, as described previously, by plugging, multiple intermediate nonlinear

layers between the hidden state h[t] and the output y[t]. Each of these choices has

a di↵erent implication that can be intuitively argued for based on the semantics

assigned to them by their corresponding neural operators.

Deep Input-to-Hidden Function

A model can exploit more non-temporal structure from the input by making

the input-to-hidden function deep. Previous work has shown that higher-level

representations of deep networks tend to better disentangle the underlying factors

of variation than the original input (Goodfellow et al., 2009; Glorot et al., 2011b)

and flatten the manifolds near which the data concentrate (Bengio et al., 2013).

We hypothesize that such higher-level representations should make it easier to

learn the temporal structure between successive time steps because the relationship

between abstract features can generally be expressed more easily. This has been, for

instance, illustrated by the recent work (Mikolov et al., 2013) showing that word

embeddings from neural language models tend to be related to their temporal

neighbors by simple algebraic relationships, with the same type of relationship
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(adding a vector) holding over very di↵erent regions of the space, allowing a form

of analogical reasoning.

This approach of making the input-to-hidden function deeper is in the line with

the standard practice of replacing input with extracted features in order to improve

the performance of a machine learning model (see, e.g., Bengio, 2009). Recently,

Chen and Deng (2013) reported that a better speech recognition performance could

be achieved by employing this strategy, although they did not jointly train the deep

input-to-hidden function together with other parameters of an RNN.

Deep Hidden-to-Output Function

A deep hidden-to-output function can be useful to disentangle the factors of

variations in the hidden state, making it easier to predict the output. This allows

the hidden state of the model to be more compact and may result in the model being

able to summarize the history of previous inputs more e�ciently. Let us denote an

RNN with this deep hidden-to-output function a deep output RNN (DO-RNN).

Instead of having feedforward, intermediate layers between the hidden state and

the output, Boulanger-Lewandowski et al. (2012) proposed to replace the output

layer with a conditional generative model such as restricted Boltzmann machines

or neural autoregressive distribution estimator (Larochelle and Murray, 2011). In

this chapter we only consider feedforward intermediate layers.

Deep Hidden-to-Hidden Transition

The third knob we can play with is the depth of the hidden-to-hidden transition.

The state transition between the consecutive hidden states e↵ectively adds a new

input to the summary of the previous inputs represented by the fixed-length hidden

state. This interpretation is made apparent, for example, by the � operator, which

“sums” together the two inputs, the previous hidden state and the input tot the

model.

Previous work with RNNs has generally limited the architecture to a shallow

operation; a�ne transformation followed by an element-wise nonlinearity. Instead,

we argue that this procedure of constructing a new summary, or a hidden state,

from the combination of the previous one and the new input should be highly

nonlinear. This nonlinear transition could allow, for instance, the hidden state
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of an RNN to rapidly adapt to quickly changing modes of the input, while still

preserving a useful summary of the past. This may be impossible to be modeled

by a function from the family of generalized linear models. However, this highly

nonlinear transition can be modeled by an MLP with one or more hidden layers

which has an universal approximator property (see, e.g., Hornik et al., 1989).

An RNN with this deep transition will be called a deep transition RNN (DT-

RNN). This model is shown in Figure 6.4 (a).

This approach of having a deep transition, however, introduces a potential prob-

lem. As the introduction of deep transition increases the number of nonlinear steps

the gradient has to traverse when propagated back in time, it might become more

di�cult to train the model to capture long-term dependencies (Bengio et al., 1994).

One possible way to address this di�culty is to introduce shortcut connections (see,

e.g., Raiko et al., 2012) in the deep transition, where the added shortcut connec-

tions provide shorter paths, skipping the intermediate layers, through which the

gradient is propagated back in time. We refer to an RNN having deep transition

with shortcut connections by DT(S)-RNN (See Figure 6.4 (a*)).

Furthermore, we will call an RNN having both a deep hidden-to-output function

and a deep transition a deep output, deep transition RNN (DOT-RNN). See Fig-

ure 6.4 (b) for the illustration of DOT-RNN. If we consider shortcut connections as

well in the hidden to hidden transition, we call the resulting model DOT(S)-RNN.

An approach similar to the deep hidden-to-hidden transition has been proposed

recently by Pinheiro and Collobert (2014) in the context of parsing a static scene.

They introduced a recurrent convolutional neural network (RCNN) which can be

understood as a recurrent network whose the transition between consecutive hidden

states (and input to hidden state) is modeled by a convolutional neural network.

The RCNN was shown to speed up scene parsing and obtained the state-of-the-art

result in Stanford Background and SIFT Flow datasets. Ko and Dieter (2009) pro-

posed deep transitions for Gaussian Process models. Earlier, Valpola and Karhunen

(2002) used a deep neural network to model the state transition in a nonlinear, dy-

namical state-space model.

Stack of Hidden States

An RNN may be extended deeper in yet another way by stacking multiple

recurrent hidden layers on top of each other (Schmidhuber, 1992; El Hihi and
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(a) DT-RNN (a*) DT(S)-RNN (b) DOT-RNN (c) Stacked RNN

Figure 6.4: Illustrations of four di↵erent recurrent neural networks (RNN). (a) Deep Transition
(DT) RNN. (a*) DT-RNN with shortcut connections (b) Deep Transition, Deep Output (DOT)
RNN. (c) Stacked RNN

Bengio, 1996; Jaeger, 2007a; Graves, 2013). We call this model a stacked RNN

(sRNN) to distinguish it from the other proposed variants. The goal of a such

model is to encourage each recurrent level to operate at a di↵erent timescale.

It should be noticed that the DT-RNN and the sRNN extend the conventional,

shallow RNN in di↵erent aspects. If we look at each recurrent level of the sRNN

separately, it is easy to see that the transition between the consecutive hidden

states is still shallow. As we have argued above, this limits the family of functions

it can represent. For example, if the structure of the data is su�ciently complex,

incorporating a new input frame into the summary of what had been seen up to

now might be an arbitrarily complex function. In such a case we would like to

model this function by something that has universal approximator properties, as

an MLP. The model can not rely on the higher layers to do so, because the higher

layers do not feed back into the lower layer. On the other hand, the sRNN can deal

with multiple time scales in the input sequence, which is not an obvious feature of

the DT-RNN. The DT-RNN and the sRNN are, however, orthogonal in the sense

that it is possible to have both features of the DT-RNN and the sRNN by stacking

multiple levels of DT-RNNs to build a stacked DT-RNN which we do not explore

more in this chapter.

6.3.1 Formal descriptions of deep RNNs

Here we give a more formal description on how the deep transition recurrent

neural network (DT-RNN) and the deep output RNN (DO-RNN) as well as the
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stacked RNN are implemented.

Deep Transition RNN

We noticed from the state transition equation of the dynamical system simulated

by RNNs in Eq. (6.1) that there is no restriction on the form of ⇢h. Hence, we

propose here to use a multilayer perceptron to approximate ⇢h instead.

In this case, we can implement ⇢h by L intermediate layers such that

h[t] = ⇢h(h[t�1],u[t]) = �[L]
�
W[L]�[L�1]

�
W[L�1]�[L�2]

�
· · · �[1]

�
W[1]h[t�1] +W(in)u[t]

����
,

where �[l] and W[l] are the element-wise nonlinear function and the weight matrix

for the l-th layer. This RNN with a multilayered transition function is a deep

transition RNN (DT-RNN).

An illustration of building an RNN with the deep state transition function is

shown in Figure 6.4 (a). In the illustration the state transition function is imple-

mented with a neural network with a single intermediate layer.

This formulation allows the RNN to learn a non-trivial, highly nonlinear tran-

sition between the consecutive hidden states.

Deep Output RNN

Similarly, we can use a multilayer perceptron with L intermediate layers to

model the output function ⇢o in Equation (6.2) such that

y[t] = ⇢o(ht) = �(out)
[L]

⇣
W(out)

[L] �(out)
[L�1]

⇣
W(out)

[L�1]�
(out)
[L�2]

⇣
· · · �(out)

[1]

⇣
W(out)

[1] h[t]

⌘⌘⌘⌘
,

where �(out)
[l] and W(out)

[l] are the element-wise nonlinear function and the weight

matrix for the l-th layer. An RNN implementing this kind of multilayered output

function is a deep output recurrent neural network (DO-RNN).

Fig. 6.4 (b) draws a deep output, deep transition RNN (DOT-RNN) imple-

mented using both the deep transition and the deep output with a single interme-

diate layer each.
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Stacked RNN

The stacked RNN (Schmidhuber, 1992; El Hihi and Bengio, 1996) has multiple

levels of transition functions defined by

h(l)
[t] = ⇢(l)h (h(l)

[t�1],h
(l�1)
[t] ) = �

⇣
W[l]h

(l)
[t�1] +W[l]h

(l�1)
[t]

⌘
,

where h(l)
[t] is the hidden state of the l-th level at time t. When l = 1, the state

is computed using u[t] instead of h(l�1)
[t] . The hidden states of all the levels are

recursively computed from the bottom level l = 1.

Once the top-level hidden state is computed, the output can be obtained using

the usual formula. Alternatively, one may use all the hidden states to compute

the output (Hermans and Schrauwen, 2013). Each hidden state at each level may

also be made to depend on the input as well (Graves, 2013). Both of them can be

considered approaches using shortcut connections discussed earlier.

The illustration of this stacked RNN is in Fig. 6.4 (c).

6.4 Experiments

We train four types of RNNs described in this chapter on a number of benchmark

datasets to evaluate their performance. For each benchmark dataset, we try the

task of predicting the next symbol.

The task of predicting the next symbol is equivalent to the task of modeling

the distribution over a sequence. For each sequence u[1], . . . ,u[T ], we decompose it

into

p(u[1], . . . ,u[T ]) = p(u[1])
TY

t=2

p(u[t] | u[1], . . . ,u[t�1]),

and each term on the right-hand side will be replaced with a single timestep of an

RNN. In this setting, the RNN predicts the probability of the next symbol u[t] in

the sequence given the all previous symbols u[1], . . .u[t�1]. Then, we train the RNN

by maximizing the log-likelihood.

We try this task of modeling the joint distribution on three di↵erent tasks;

polyphonic music prediction, character-level and word-level language modeling.
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We test the RNNs on the task of polyphonic music prediction using three

datasets which are Nottingham, JSB Chorales and MuseData (Boulanger-Lewandowski

et al., 2012). On the task of character-level and word-level language modeling, we

use Penn Treebank Corpus (Marcus et al., 1993).

6.4.1 Model Descriptions

We compare the conventional recurrent neural network (RNN), deep transition

RNN with shortcut connections in the transition MLP (DT(S)-RNN), deep out-

put/transition RNN with shortcut connections in the hidden to hidden transition

MLP (DOT(S)-RNN) and stacked RNN (sRNN).

RNN DT(S)-RNN DOT(S)-RNN sRNN
2 layers

Music
Notthingam 600 400,400 400,400,400 400
JSB Chorales 200 400,400 400,400,400 400
MuseData 600 400,400 400,400,400 600

Language
Char-level 600 400,400 400,400,600 400
Word-level 200 200,200 200,200,200 400

Table 6.1: The sizes of the trained models. For DT(S)-RNN, the two numbers provided are
the size of the hidden state and that of the intermediate layer, respectively. For DOT(S)-RNN,
the three numbers are the size of the hidden state, that of the intermediate layer between the
consecutive hidden states and that of the intermediate layer between the hidden state and the
output layer. For sRNN, the number corresponds to the size of the hidden state at each level.

The size of each model is chosen from a limited set {100, 200, 400, 600, 800} to

minimize the validation error for each polyphonic music task (See Table 6.1 for

the final models). In the case of language modeling tasks, we chose the size of

the models from {200, 400} and {400, 600} for word-level and character-level tasks,

respectively. In all cases, we use a logistic sigmoid function as an element-wise

nonlinearity of each hidden unit. Only for the character-level language modeling

we used rectified linear units (Glorot et al., 2011a) for the intermediate layers of the

output function, which gave lower validation error. In Gulcehre, Cho, Pascanu, and

Bengio (2014) we also explore maxout and Lp units for polyphonic music prediction,

which give better performance.
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6.4.2 Training

We use stochastic gradient descent, where we clipped the norm of the gradi-

ents when exceeding some threshold (see Section 5.7). Training stops when the

validation cost stops decreasing.

Polyphonic Music Prediction: For Nottingham and MuseData datasets we

compute each gradient step on subsequences of at most 200 steps, while we use

subsequences of 50 steps for JSB Chorales. We do not reset the hidden state

for each subsequence, unless the subsequence belongs to a di↵erent song than the

previous subsequence.

The cost (negative log likelihood) is divided by the expected length of the

subsequence (200 and 50 respectively). Note that not all subsequences have this

length (for e.g. being at the end of a song), though we divide the cost by 200 or

50 in that case as well.

The cuto↵ threshold for the gradients is set to 1. The hyperparameter for the

learning rate schedule 1 is tuned manually for each dataset. We set the hyperpa-

rameter � to 2330 for Nottingham, 1475 for MuseData and 100 for JSB Chroales.

They correspond to two epochs, a single epoch and a third of an epoch, respectively.

The weights of the connections between any pair of hidden layers are sparse,

having only 20 non-zero incoming connections per unit (see, e.g., Sutskever et al.,

2013). Each weight matrix is rescaled to have a unit largest singular value. The

weights of the connections between the input layer and the hidden state as well

as between the hidden state and the output layer are initialized randomly from a

Gaussian distribution with standard deviation fixed to 0.1 and 0.01, respectively.

In the case of deep output functions (DOT(S)-RNN), the weights of the connections

between the hidden state and the intermediate layer are sampled initially from the

white Gaussian distribution of standard deviation 0.01. In all cases, the biases are

initialized to 0.

To regularize the models, we add white Gaussian noise of standard deviation

0.075 to each weight parameter every time the gradient is computed (Graves, 2011).

Language Modeling: We used the same strategy for initializing the parame-

1. We use at each update ⌧ , the following learning rate ⌘⌧ = 1

1+
max(0,⌧�⌧

0

)

�

, where ⌧0 and �

indicate respectively when the learning rate starts decreasing and how quickly the learning rate
decreases. In the experiment, we set ⌧0 to coincide with the time when the validation error starts
increasing for the first time.
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ters in the case of language modeling. For character-level modeling, the standard

deviations of the white Gaussian distributions for the input-to-hidden weights and

the hidden-to-output weights, we used 0.01 and 0.001, respectively, while those hy-

perparameters were both 0.1 for word-level modeling. In the case of DOT(S)-RNN,

we sample the weights of between the hidden state and the rectifier intermediate

layer of the output function from the white Gaussian distribution of standard devi-

ation 0.01. When using rectifier units (character-based language modeling) we fix

the biases to 0.1.

In language modeling, the learning rate starts from an initial value and is halved

each time the validation cost does not decrease significantly (Mikolov et al., 2010).

We do not use any regularization for the character-level modeling, but for the word-

level modeling we use the same strategy of adding weight noise as we do with the

polyphonic music prediction.

For all the tasks (polyphonic music prediction, character-level and word-level

language modeling), the stacked RNN and the DOT(S)-RNN were initialized with

the weights of the conventional RNN and the DT(S)-RNN, which is similar to layer-

wise pretraining of a feedforward neural network (see, e.g., Hinton and Salakhutdi-

nov, 2006). We use a ten times smaller learning rate for each parameter that was

pretrained as either RNN or DT(S)-RNN.

RNN DT(S)-RNN DOT(S)-RNN sRNN DOT(S)-RNN*

Notthingam 3.225 3.206 3.215 3.258 2.95
JSB Chorales 8.338 8.278 8.437 8.367 7.92
MuseData 6.990 6.988 6.973 6.954 6.59

Table 6.2: The performances of the four types of RNNs on the polyphonic music prediction.
The numbers represent negative log-probabilities on test sequences. (*) We obtained these results
using DOT(S)-RNN with Lp units in the deep transition, maxout units in the deep output function
and dropout (Gulcehre, Cho, Pascanu, and Bengio, 2014).

6.4.3 Result and Analysis

Polyphonic Music Prediction

The log-probabilities on the test set of each data are presented in the first

four columns of Table 6.2. We were able to observe that in all cases one of the

proposed deep RNNs outperformed the conventional, shallow RNN. Though, the
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suitability of each deep RNN depended on the data it was trained on. The best

results obtained by the DT(S)-RNNs on Notthingam and JSB Chorales are close

to, but worse than the result obtained by RNNs trained with the technique of fast

dropout (FD) which are 3.09 and 8.01, respectively (Bayer et al., 2014).

In order to quickly investigate whether the proposed deeper variants of RNNs

may also benefit from the recent advances in feedforward neural networks, such

as the use of non-saturating activation functions 1 and the method of dropout.

We have built another set of DOT(S)-RNNs that have the recently proposed Lp

units (Gulcehre, Cho, Pascanu, and Bengio, 2014) in deep transition and maxout

units (Goodfellow et al., 2013) in deep output function. Furthermore, we used the

method of dropout (Hinton et al., 2012) instead of weight noise during training.

Similarly to the previously trained models, we searched for the size of the models as

well as other learning hyperparameters that minimize the validation performance.

We, however, did not pretrain these models.

The results obtained by the DOT(S)-RNNs having Lp and maxout units trained

with dropout are shown in the last column of Table 6.2. On every music dataset

the performance by this model is significantly better than those achieved by all the

other explored models as well as the best results reported with recurrent neural

networks in (Bayer et al., 2014). This suggests us that the proposed variants of

deep RNNs also benefit from having non-saturating activations and using dropout,

just like feedforward neural networks. We reported these results and more details

on the experiment in (Gulcehre, Cho, Pascanu, and Bengio, 2014).

We, however, acknowledge that the model-free state of the art results for the

music datasets were obtained using an RNN combined with a conditional generative

model, such as restricted Boltzmann machines or neural autoregressive distribution

estimator (Larochelle and Murray, 2011), in the output (Boulanger-Lewandowski

et al., 2012).

1. Note that it is not trivial to use non-saturating activation functions in conventional RNNs,
as this may cause the explosion of the activations of hidden states. However, it is perfectly safe
to use non-saturating activation functions at the intermediate layers of a deep RNN with deep
transition.

1. Reported by Mikolov et al. (2012) using mRNN with Hessian-free optimization technique.
2. Reported by Mikolov et al. (2011) using the dynamic evaluation.
3. Reported by Graves (2013) using the dynamic evaluation and weight noise.
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RNN DT(S)-RNN DOT(S)-RNN sRNN ⇤ ?

Character-Level 1.414 1.409 1.386 1.412 1.41 1 1.24 3

Word-Level 117.7 112.0 107.5 110.0 123 2 117 3

Table 6.3: The performances of the four types of RNNs on the tasks of language modeling. The
numbers represent bit-per-character and perplexity computed on test sequence, respectively, for
the character-level and word-level modeling tasks. ⇤ The previous/current state-of-the-art results
obtained with shallow RNNs. ? The previous/current state-of-the-art results obtained with RNNs
having long-short term memory units.

Language Modeling

In Table 6.3, we can see the perplexities on the test set achieved by all four

models. Deep RNNs (DT(S)-RNN, DOT(S)-RNN and sRNN) outperform the con-

ventional, shallow RNN significantly. On these tasks DOT(S)-RNN outperformed

all the other models, which suggests that it is important to have nonlinear mapping

from the hidden state to the output in the case of language modeling.

The results by both the DOT(S)-RNN and the sRNN for word-level modeling

surpassed the previous best performance achieved by an RNN with 1000 long short-

term memory (LSTM) units (Graves, 2013) as well as that by a shallow RNN with

a larger hidden state (Mikolov et al., 2011), even when both of them used dynamic

evaluation 1. The results we report here are with out dynamic evaluation.

For character-level modeling the state of the art results were obtained using an

optimization method Hessian-free with a specific type of RNN architecture called

mRNN (Mikolov et al., 2012) or a regularization technique called adaptive weight

noise (Graves, 2013). Our result, however, is better than the performance achieved

by conventional, shallow RNNs with out any of these enhancements (Mikolov et al.,

2012), where they reported the best performance of 1.41 using an RNN trained with

the Hessian-free learning algorithm (Martens and Sutskever, 2011).

1. Dynamic evaluation refers to an approach where the parameters of a model are updated as
the validation/test data is predicted.
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6.5 Conclusion and Outlook

In this chapter we looked at the meaning of depth for recurrent neural networks.

The question we are after is how e�cient is a recurrent model in terms of the

size needed to represent some behaviour. Model size is not only connected to

computational costs, but also to statistical e�ciency in learning. By the arguments

used for feedforward models, we can hope that depth can make recurrent models

more e�cient at representing certain behaviours. Unfortunately, in contrast to

feedforward models, for recurrent networks, the meaning of depth is ambiguous.

A recurrent network can be understood as a series of operations that are re-

peated at each time step. For example, constructing the new hidden state can be

seen as such an operation, that takes the previous history (hidden state) and the

current input and constructs a new state that incorporates the new input example.

From this operator view of the recurrent model it is obvious that any such operator

that composes one step of the model can be made deep. This leads to di↵erent

variants of deep recurrent models, each with di↵erent characteristics. For example,

the DT-RNN has deep transitions between hidden states and it is able to learn

more e�ciently behaviours that involve very non-smooth changes in the hidden

state, changes that also depend on the context.

We limit this work to an empirical evaluation of these di↵erent variants of

deep recurrent models. However, a similar approach to the one used in Chapter 3

might be a possible future direction to also provide a theoretical treatment of this

questions. It could also lead to insights into what kind of behaviours the rectifier

model can learn.

Yet another direction that we intend to pursue as future work is to understand

how these structural changes interact with di↵erent phenomena that can be ob-

tained in recurrent models. For example, what are the properties of the weight

matrices compounding the transition of a DT-RNN for this model to have the echo

state property?

Another practical direction is to explore and validate the di↵erent alterations

proposed for deep feedforward models within these deep transitions. For example,

unbounded, piecewise linear functions seem to behave very well for feedforward

networks. Using rectifiers for RNN, however, is not straight forward, as it can

easily lead to an unstable system. Instead of dealing with only the exploding
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gradients problem, now even the forward activation can explode. Arguably, bits

of information are stored in the activation of the hidden units by saturating the

sigmoid units. This also can not be done with unbounded activations. For a DT-

RNN model, we do not need to deal with these issues if we use these kind of

activations in the intermediary layers of the deep transitions.

Additionally, more explorations is needed on how these di↵erent ways of being

deep can be used together and what di↵erent aspects of a problem they might

address. Constructing rules of thumb for these variants of the model is important,

as it is to be expected that the kind of deep RNN that performs best depends on

the task at hand.

Finally, as observed in the experiments we run, learning is more di�cult for these

models. Preliminary experiments that used more that a single intermediary layer

in the deep hidden to hidden transitions severely underperformed. As future work,

we intend to explore di↵erent optimization algorithms, such as natural gradient

descent or Saddle-Free Newton method. We also want, in parallel, to look at the

regularization term introduced in Section 5.8 that prevents gradients to vanish

as a possible solution of this learning di�culty. And, other strategies to improve

learning that we want to consider are to either employ layer-wise pretraining, to use

additional local error signals or to use better activation functions and initializations

of the intermediary layers.
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7 A final remark

The work presented in this thesis is an attempt of deepening our understanding

of deep models. We started o↵ in Chapter 2 with an introduction to the relevant

concepts for the rest of the document. In Chapter 3 we analysed the importance of

depth, showing that deep rectifier models can be exponentially more e�cient (for a

fixed number of parameters) at modelling certain families of functions than shallow

models. Also we noted that the restriction of this e�ciency to functions that are

symmetric in their input space is the reason why deep models can generalize well.

Chapter 4 looksed at the optimization problem. While we know that deep

models can be more expressive, it is not clear how well we can find a suitable

parametrization for them. We explored the relationship between a few higher-

order optimization techniques, including natural gradient descent, Hessian-Free

Optimization and Krylov Subspace Descent. We proposed a new framework and

showed that all these algorithm can be casted into it. We also introduced the saddle-

free problem and provided motivation for why it is important to address saddle

points in large scale non-convex problems. We also introduced a new algorithm

called Saddle-Free Newton method, that should move optimally around saddle

points.

Chapters 5–6 focused on a special class of deep models, namely recurrent net-

works. Compared to feedforward models, recurrent ones are as powerful as Turing

machines. However, learning complex behaviour in recurrent models is not triv-

ial. In Chapter 5 we looked at one such complex behaviour, working memory. We

asked the question of whether this behaviour can be learnt and what are the basic

mechanism behind it. In Chapter 6 we returned to the question stated previously,

in Chapter 3, namely that of e�ciency. Based on intuitions from feedfoward mod-

els, we explored ways into which a recurrent model can be made deep as well, and

empirically showed the e�ciency of these deep recurrent models.

Similar to other work in the field, our e↵orts are just a step towards answering

these questions. And the answers we provide also end up leading to more questions,
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but provide new possible research directions for the future.

Now, at the end of this document, I want to thank you, reader, for going through

the intricate intuitions that I attempted to put forward. The thought of having

someone spend time going through the many di↵erent sections of this thesis is what

pushed me to continue writing and to not spare any detail. I hope you found this

work interesting and useful and that it managed to inspire you and helped you to

define your own questions and/or to find your own answers. I apologize for any

inconsistencies that you might have encountered.
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